In traditional kimoto-type sake production, cells of Saccharomyces cerevisiae sake yeast are grown in a starter mash generated by lactate fermentation by lactic acid bacteria (LAB) such as Leuconostoc mesenteroides and Lactobacillus sakei. However, the microbial interactions between sake yeast and kimoto LAB have not been well analyzed. Since the formation of a prion-like element (designated [GAR]) in yeast cells is promoted by bacteria, we here examined the associated phenotype (i.e., increased glucosamine resistance) in sake yeast strains K701 (a representative sake strain) and Km67 (a strain isolated from kimoto-type sake mash). Approximately 0.5% of K701 and Km67 cells, as well as 0.2% of laboratory strain X2180 cells, exhibited increased glucosamine resistance under pure culture conditions, and the frequency of this metabolic switching was further enhanced by coculture with kimoto LAB. The LAB-promoted emergence of the glucosamine-resistant cells was the most prominent in Km67, suggesting that this strain possesses an advanced mechanism for response to LAB. While the glucosamine-resistant clones of X2180 and K701 exhibited lower rates of alcoholic fermentation under high-glucose conditions than did the respective naive strains, glucosamine resistance did not severely affect alcoholic fermentation in Km67. The population of dead cells after alcoholic fermentation was decreased in the glucosamine-resistant clones of X2180, K701, and Km67. These results suggested that the formation of [GAR] in Km67 may be beneficial in kimoto-type sake making, since [GAR] may increase cell viability in the sake starter mash without impairing alcoholic fermentation performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2018.05.011DOI Listing

Publication Analysis

Top Keywords

sake yeast
16
alcoholic fermentation
16
kimoto-type sake
12
glucosamine resistance
12
sake
9
metabolic switching
8
yeast kimoto
8
lactic acid
8
acid bacteria
8
starter mash
8

Similar Publications

Daki warm treatment (daki-ire) is performed during the process of seed mash preparation in the brewing of Japanese sake in order to promote the saccharification of rice by koji enzyme and to enhance the growth of Saccharomyces cerevisiae. Although it is important to control the growth of lactic acid bacteria in the preparation of kimoto-style seed mash (traditional sake-brewing method), it has not been known whether the transient increase in the temperature and/or appropriate temperature zone produced by daki-ire influences the growth of bacteria. A temperature increase generally helps bacterial growth, but we have found no published investigation of the influence of temperature changes in daki-ire on bacterial growth during the kimoto-style seed mash preparation process.

View Article and Find Full Text PDF

Isolation of an endophytic yeast for improving the antibacterial activity of water chestnut Jiaosu: Focus on variation of microbial communities.

Enzyme Microb Technol

January 2025

College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China. Electronic address:

Recent years have seen an increase in the development of functional Jiaosu products, including eco-friendly Jiaosu and antimicrobial healthcare fermentation products. As a result, research on the antibacterial activity of Jiaosu has attracted attention. In the present study, the endophytic yeast WCF016, which exhibits antibacterial activity against Escherichia coli and Staphylococcus aureus, was isolated from the peel of water chestnut and identified as Candida sake via morphological and phylogenetic analyses based on 26S rDNA D1/D2 region sequencing.

View Article and Find Full Text PDF

Coenzyme Q (CoQ), a component of the electron transport chain, participates in aerobic respiration to produce ATP. Little is known about the relationship between CoQ and ethanol fermentation. Herein, we revealed that the deficiency or the addition of CoQ in sake yeast led to an increase or a decrease, respectively, in ethanol production rate at the early stage of fermentation.

View Article and Find Full Text PDF

Efficient yeast breeding using a sake metabolome analysis for a strain evaluation.

J Biosci Bioeng

February 2025

National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan. Electronic address:

Article Synopsis
  • * To improve this process, researchers used metabolome analysis to evaluate yeast strains after screening for desired traits, leading to the selection of 110 sake yeast candidates cultured in a controlled environment.
  • * The study found that the metabolomic data from small-scale cultures was consistent with larger fermentation tests, suggesting the effectiveness of metabolome analysis in identifying yeast strains with specific desirable traits, marking a novel approach for yeast breeding in sake production.
View Article and Find Full Text PDF

Effects of white colony-forming yeast on microbial communities and metabolites in kimchi.

Food Chem

February 2025

Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea. Electronic address:

White colony-forming yeast (WCFY) forms white colonies on kimchi during fermentation, causing off-flavors and quality deterioration, which are significantly damaging to kimchi industry. To study its impact, kimchi samples were inoculated with representative WCFYs (Candida sake, Debaryomyces hansenii, Kazachstania servazzii, and Pichia kudriavzevii) and monitored for 50 days at 15 °C using high-throughput DNA sequencing and gas chromatography/mass spectrometry. Dominant bacteria at the end of fermentation were Companilactobacillus and Latilactobacillus in the control and WCFY-inoculated samples, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!