Elemental Stoichiometry and Photophysiology Regulation of Synechococcus sp. PCC7002 Under Increasing Severity of Chronic Iron Limitation.

Plant Cell Physiol

Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Boulevard Carl-Vogt 66, Geneva 4, Switzerland.

Published: September 2018

Iron (Fe) is an essential cofactor for many metabolic enzymes of photoautotrophs. Although Fe limits phytoplankton productivity in broad areas of the ocean, phytoplankton have adapted their metabolism and growth to survive in these conditions. Using the euryhaline cyanobacterium Synechococcus sp. PCC7002, we investigated the physiological responses to long-term acclimation to four levels of Fe availability representative of the contemporary ocean (36.7, 3.83, 0.47 and 0.047 pM Fe'). With increasing severity of Fe limitation, Synechococcus sp. cells gradually decreased their volume and growth while increasing their energy allocation into organic carbon and nitrogen cellular pools. Furthermore, the total cellular content of pigments decreased. Additionally, with increasing severity of Fe limitation, intertwined responses of PSII functional cross-section (σPSII), re-oxidation time of the plastoquinone primary acceptor QA (τ) and non-photochemical quenching revealed a shift in the photophysiological response between mild to strong Fe limitation compared with severe limitation. Under mild and strong Fe limitation, there was a decrease in linear electron transport accompanied by progressive loss of state transitions. Under severe Fe limitation, state transitions seemed to be largely supplanted by alternative electron pathways. In addition, mechanisms to dissipate energy excess and minimize oxidative stress associated with high irradiances increased with increasing severity of Fe limitation. Overall, our results establish the sequence of physiological strategies adopted by the cells under increasing severity of chronic Fe limitation, within a range of Fe concentrations relevant to modern ocean biogeochemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcy097DOI Listing

Publication Analysis

Top Keywords

increasing severity
20
severity limitation
12
limitation
9
synechococcus pcc7002
8
severity chronic
8
mild strong
8
strong limitation
8
severe limitation
8
state transitions
8
increasing
6

Similar Publications

Improving Understanding of Fexofenadine Pharmacokinetics to Assess Pgp Phenotypic Activity in Older Adult Patients Using Population Pharmacokinetic Modeling.

Clin Pharmacokinet

January 2025

Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care Department, Geneva University Hospitals, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.

Background And Objective: Fexofenadine is commonly used as a probe substrate to assess P-glycoprotein (Pgp) activity. While its use in healthy volunteers is well documented, data in older adult and polymorbid patients are lacking. Age- and disease-related physiological changes are expected to affect the pharmacokinetics of fexofenadine.

View Article and Find Full Text PDF

Purpose: In recent years, major advancements have been made in rectal cancer surgery with the introduction of new techniques such as robotic surgery and indocyanine green fluorescence imaging (ICG-FI). This study aimed to evaluate the comprehensive risk factors for anastomotic leakage (AL) following rectal cancer surgery, incorporating recently introduced techniques and other existing factors, to reflect current practices.

Methods: A retrospective analysis was conducted of 304 patients who underwent either robotic or laparoscopic anterior resection between January 2019 and December 2023.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!