AI Article Synopsis

  • The study investigates the differences in RNA expression between corneas from patients with keratoconus (KC) and healthy controls, using advanced RNA sequencing techniques.
  • A total of 436 coding RNAs and 584 long noncoding RNAs were found to have significant differential expression, highlighting genes linked to cell migration and other biological processes.
  • The results suggest specific genes and pathways that could play important roles in the development of keratoconus, potentially guiding future research and therapeutic strategies.

Article Abstract

Purpose: Keratoconus (KC) is the most common corneal ectasia. We aimed to determine the differential expression of coding and long noncoding RNAs (lncRNAs) in human corneas affected with KC.

Methods: From the corneas of 10 KC patients and 8 non-KC healthy controls, 200 ng total RNA was used to prepare sequencing libraries with the SMARTer Stranded RNA-Seq kit after ribosomal RNA depletion, followed by paired-end 50-bp sequencing with Illumina Sequencer. Differential analysis was done using TopHat/Cufflinks with a gene file from Ensembl and a lncRNA file from NONCODE. Pathway analysis was performed using WebGestalt. Using the expression level of differentially expressed coding and noncoding RNAs in each sample, we correlated their expression levels in KC and controls separately and identified significantly different correlations in KC against controls followed by visualization using Cytoscape.

Results: Using |fold change| ≥ 2 and a false discovery rate ≤ 0.05, we identified 436 coding RNAs and 584 lncRNAs with differential expression in the KC-affected corneas. Pathway analysis indicated the enrichment of genes involved in extracellular matrix, protein binding, glycosaminoglycan binding, and cell migration. Our correlation analysis identified 296 pairs of significant KC-specific correlations containing 117 coding genes enriched in functions related to cell migration/motility, extracellular space, cytokine response, and cell adhesion. Our study highlighted the potential roles of several genes (CTGF, SFRP1, AQP5, lnc-WNT4-2:1, and lnc-ALDH3A2-2:1) and pathways (TGF-β, WNT signaling, and PI3K/AKT pathways) in KC pathogenesis.

Conclusions: Our RNA-Seq-based differential expression and correlation analyses have identified many potential KC contributing coding and noncoding RNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984031PMC
http://dx.doi.org/10.1167/iovs.18-24267DOI Listing

Publication Analysis

Top Keywords

differential expression
16
noncoding rnas
16
expression coding
8
coding long
8
long noncoding
8
pathway analysis
8
coding noncoding
8
coding
6
differential
5
rnas
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!