To properly orient and navigate, moving animals must obtain information about the position and motion of their bodies. Animals detect inertial signals resulting from body accelerations and rotations using a variety of sensory systems. In this review, we briefly summarize current knowledge on inertial sensing across widely disparate animal taxa with an emphasis on neuronal coding and sensory transduction. We outline systems built around mechanosensory hair cells, including the chordate vestibular complex and the statocysts seen in many marine invertebrates. We next compare these to schemes employed by flying insects for managing inherently unstable aspects of flapping flight, built around comparable mechanosensory cells but taking unique advantage of the physics of rotating systems to facilitate motion encoding. Finally, we highlight fundamental similarities across taxa with respect to the partnering of inertial senses with visual senses and conclude with a discussion of the functional utility of maintaining a multiplicity of encoding schemes for self-motion information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icy041 | DOI Listing |
Talanta
December 2024
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China. Electronic address:
The mortality rate of tumor is still very high till now. Circulating tumor cells (CTCs) are the major culprit of high cancer mortality. To improve survival rate of cancer patients, real-time monitoring and quantitative detection of CTCs are of indescribable value.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China; The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China.
Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface.
View Article and Find Full Text PDFJ Med Internet Res
December 2024
CYENS - Centre of Excellence, Nicosia, Cyprus.
Background: The development of wearable solutions for tracking upper limb motion has gained research interest over the past decade. This paper provides a systematic review of related research on the type, feasibility, signal processing techniques, and feedback of wearable systems for tracking upper limb motion, mostly in rehabilitation applications, to understand and monitor human movement.
Objective: The aim of this article is to investigate how wearables are used to capture upper limb functions, especially related to clinical and rehabilitation applications.
Eur J Neurol
January 2025
UOC Clinica Neurologica Rete Metropolitana NEUROMET, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
Background: The efficacy of subthalamic stimulation on axial signs of Parkinson's disease (PD) is debated in the literature. This study delves into the dynamic interplay of gait and posture, specifically probing their nuanced response to subthalamic stimulation and levodopa.
Methods: We used wearable sensor technology to examine alterations in the spatiotemporal parameters of gait and posture in individuals with PD before and 6 months after subthalamic deep brain stimulation (STN-DBS) surgery.
Photoacoustics
February 2025
Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.
The quartz tuning fork (QTF) being the acoustic-electrical conversion element for quartz-enhanced photoacoustic spectroscopy (QEPAS) system directly affects the detection sensitivity. However, the low electromechanical conversion efficiency characteristic of standard QTF limits the further enhancement of the system. Therefore, the optimized design for QTF is becoming an important approach to improve the performance of QEPAS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!