Purpose: Brain-computer interfaces (BCIs) can provide access to augmentative and alternative communication (AAC) devices using neurological activity alone without voluntary movements. As with traditional AAC access methods, BCI performance may be influenced by the cognitive-sensory-motor and motor imagery profiles of those who use these devices. Therefore, we propose a person-centered, feature matching framework consistent with clinical AAC best practices to ensure selection of the most appropriate BCI technology to meet individuals' communication needs.
Method: The proposed feature matching procedure is based on the current state of the art in BCI technology and published reports on cognitive, sensory, motor, and motor imagery factors important for successful operation of BCI devices.
Results: Considerations for successful selection of BCI for accessing AAC are summarized based on interpretation from a multidisciplinary team with experience in AAC, BCI, neuromotor disorders, and cognitive assessment. The set of features that support each BCI option are discussed in a hypothetical case format to model possible transition of BCI research from the laboratory into clinical AAC applications.
Conclusions: This procedure is an initial step toward consideration of feature matching assessment for the full range of BCI devices. Future investigations are needed to fully examine how person-centered factors influence BCI performance across devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195025 | PMC |
http://dx.doi.org/10.1044/2018_AJSLP-17-0135 | DOI Listing |
J Am Chem Soc
January 2025
Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany.
The human visual system possesses a remarkable ability to detect and process faces across diverse contexts, including the phenomenon of face pareidolia--seeing faces in inanimate objects. Despite extensive research, it remains unclear why the visual system employs such broadly tuned face detection capabilities. We hypothesized that face pareidolia results from the visual system's optimization for recognizing both faces and objects.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.
In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.
View Article and Find Full Text PDFEur J Neurol
February 2025
Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.
View Article and Find Full Text PDFThe order Diptera (true flies) holds promise as a model taxon in evolutionary developmental biology due to the inclusion of the model organism, Drosophila melanogaster, and the ability to cost-effectively rear many species in laboratories. One of them, the scuttle fly Megaselia abdita (Phoridae) has been used in the field of evolutionary developmental biology for 30 years and is an excellent phylogenetic intermediate between fruit flies and mosquitoes but remains underdeveloped in genomic resources. Here, we present a de novo chromosome-level assembly and annotation of M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!