Recently, many efforts are taken to identify the intestinal uptake and efflux transporters since they are responsible for the absorption of many drugs as their interactions. Norfloxacin (NFX) is a fluoroquinolone that presents low solubility and low permeability, and as a consequence, low bioavailability. In this context, the aim of this study is evaluate for the first time the intestinal permeability mechanisms of NFX by Ussing chamber model. The low permeation of NFX at low temperature, where the efflux pumps are not active, reveals that NFX permeation is transporter-dependent. The permeation study at different level of intestine demonstrated that NFX passage is in the decrescent order: ileum > jejunum > duodenum > colon, probably attributed to transporters that are expressed differently along the intestinal tract. NFX intestinal flow was evaluated in the presence of many inhibitors and substrates to identify the uptake and efflux transporters implicate in NFX permeability mechanism. It could be observed that BCRP and MRPs are involved in the NFX efflux and PEPT1, PMAT and OCT in the NFX uptake transport. Furthermore, this work revealed that NFX has itself an affinity for OCTN and OATP, demonstrating that NFX could inhibit these transporters and influence the absorption of other drugs. The updated description of NFX intestinal permeability factors could contribute to the development of rational pharmaceutical formulations that could circumvent the efflux problems and consequently improve NFX biopharmaceutical properties and avoid drug-drug interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2018.05.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!