Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon.

J Glob Antimicrob Resist

Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon.

Published: December 2018

Acinetobacter baumannii is an opportunistic bacterium involved in several types of infection with high mortality and morbidity, especially in intensive care units. Treatment of these infections remains a challenge due to the worldwide emergence of broad-spectrum resistance to many antibiotics. Following the implementation of molecular techniques to study A. baumannii outbreaks, it has been shown that they are mainly caused by specific clones such as international clones I, II and III. The present work aims to review the available data on the mechanisms underlying antimicrobial resistance in A. baumannii, with a special focus on the molecular epidemiology of this species in Lebanon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgar.2018.05.022DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
8
acinetobacter baumannii
8
baumannii special
8
special focus
8
molecular mechanisms
4
mechanisms antimicrobial
4
resistance acinetobacter
4
baumannii
4
focus epidemiology
4
epidemiology lebanon
4

Similar Publications

Development of lateral flow immunochromatographic assay with Anti-Pythium insidiosum antibodies for point-of-care testing of vascular pythiosis.

Sci Rep

January 2025

Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.

View Article and Find Full Text PDF

The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.

View Article and Find Full Text PDF

The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.

View Article and Find Full Text PDF

Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.

View Article and Find Full Text PDF

Cordycepin affects Streptococcus mutans biofilm and interferes with its metabolism.

BMC Oral Health

January 2025

Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.

Background: Streptococcus mutans (S. mutans) contributes to caries. The biofilm formed by S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!