Standing sentinel during human sleep: Continued evaluation of environmental stimuli in the absence of consciousness.

Neuroimage

University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience (CCNS), Austria. Electronic address:

Published: September 2018

While it is a well-established finding that subjects' own names (SON) and familiar voices are salient during wakefulness, we here investigated processing of environmental stimuli during sleep including deep N3 and REM sleep. Besides the effects of sleep depth we investigated how sleep-specific EEG patterns (i.e. sleep spindles and slow oscillations [SOs]) relate to stimulus processing. Using 256-channel EEG we studied processing of auditory stimuli by means of event-related oscillatory responses (de-/synchronisation, ERD/ERS) and potentials (ERPs) in N = 17 healthy sleepers. We varied stimulus salience by manipulating subjective (SON vs. unfamiliar name) and paralinguistic emotional relevance (familiar vs. unfamiliar voice, FV/UFV). Results reveal that evaluation of voice familiarity continues during all NREM sleep stages and even REM sleep suggesting a 'sentinel processing mode' of the human brain in the absence of wake-like consciousness. Especially UFV stimuli elicit larger responses in a 1-15 Hz range suggesting they continue being salient. Beyond this, we find that sleep spindles and the negative slope of SOs attenuate information processing. However, unlike previously suggested they do not uniformly inhibit information processing, but inhibition seems to be scaled to stimulus salience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2018.05.056DOI Listing

Publication Analysis

Top Keywords

sleep
8
environmental stimuli
8
rem sleep
8
sleep spindles
8
stimulus salience
8
processing
6
standing sentinel
4
sentinel human
4
human sleep
4
sleep continued
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!