Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors mediates various biological effects in cancer cells. This study aimed to investigate the roles of LPA receptors in the regulation of cellular functions during tumor progression in osteosarcoma cells. Long-term cisplatin (CDDP)-treated MG63-C and MG63-R7-C cells were generated from osteosarcoma MG-63 and highly-migratory MG63-R7 cells, respectively. LPAR2 and LPAR3 expression levels were significantly higher in MG63-C cells than in MG-63 cells, while LPAR1 expression was reduced. MG63-C cells were highly motile, compared with MG-63 cells. MG63-C cell motility was suppressed by LPA knockdown and enhanced by the LPA/LPA antagonist, dioctanoylglycerol pyrophosphate. LPAR2 and LPAR3 expression levels were significantly elevated in MG63-R7-C cells in comparison with MG63-R7 cells. MG63-R7-C cells were found to be highly invasive, correlating with metalloproteinase-2 activation. MG63-R7-C cells formed large colonies, whereas colony formation was absent from MG63-R7 cells. Notably, MG63-R7-C cell activities were inhibited by LPA knockdown. These results suggest that LPA signaling via LPA plays an important role in the acquisition of malignant properties during tumor progression in MG-63 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2018.05.037 | DOI Listing |
Exp Cell Res
August 2018
Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan. Electronic address:
Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors mediates various biological effects in cancer cells. This study aimed to investigate the roles of LPA receptors in the regulation of cellular functions during tumor progression in osteosarcoma cells. Long-term cisplatin (CDDP)-treated MG63-C and MG63-R7-C cells were generated from osteosarcoma MG-63 and highly-migratory MG63-R7 cells, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!