Peptidomimetic HIV protease inhibitors are an important class of drugs used in the treatment of AIDS. The synthesis of a new type of diol-based peptidomimetics is described. Our route is flexible, uses d-glucal as an inexpensive starting material, and makes minimal use of protection/deprotection cycles. Binding affinities from molecular docking simulations suggest that these compounds are potential inhibitors of HIV protease. Moreover, the antiproliferative activities of compounds 33 a, 35 a, and 35 b on HT-29, M21, and MCF7 cancer cell lines are in the low micromolar range. The results provide a platform that could facilitate the development of medically relevant asymmetrical diol-based peptidomimetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201800247 | DOI Listing |
Chembiochem
June 2018
Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.
Peptidomimetic HIV protease inhibitors are an important class of drugs used in the treatment of AIDS. The synthesis of a new type of diol-based peptidomimetics is described. Our route is flexible, uses d-glucal as an inexpensive starting material, and makes minimal use of protection/deprotection cycles.
View Article and Find Full Text PDFAcc Chem Res
February 2013
Center for Insoluble Protein Structures, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
Silasubstitution, where silicon is substituted for carbon at specific sites of the substrate, has become a growing practice in medicinal chemistry. Introducing silicon into bioactive compounds provides slight physical and electronic alterations to the parent compound, which in certain instances could make the substrate a more viable candidate for a drug target. One application is in the field of protease inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!