Live attenuated vaccine strains have been developed for Varicella-Zoster virus (VZV). Compared to clinically isolated strains, the vaccine strains contain several non-synonymous mutations in open reading frames (ORFs) 0, 6, 31, 39, 55, 62, and 64. In particular, ORF62, encoding an immediate-early (IE) 62 protein that acts as a transactivator for viral gene expression, contains six non-synonymous mutations, but whether these mutations affect transactivation activity of IE62 is not understood. In this study, we investigated the role of non-synonymous vaccine-type mutations (M99T, S628G, R958G, V1197A, I1260V, and L1275S) of IE62 in Suduvax, a vaccine strain isolated in Korea, for transactivation activity. In reporter assays, Suduvax IE62 showed 2- to 4-fold lower transactivation activity toward ORF4, ORF28, ORF29, and ORF68 promoters than wild-type IE62. Introduction of individual M99T, S628G, R958G, or V1197A/I1260V/L1275S mutations into wild-type IE62 did not affect transactivation activity. However, the combination of M99T within the N-terminal Sp transcription factor binding region and V1197A/I1260V/L1275S within the C-terminal serine-enriched acidic domain (SEAD) significantly reduced the transactivation activity of IE62. The M99T/V1197A/I1260V/L1275S mutant IE62 did not show considerable alterations in intracellular distribution and Sp3 binding compared to wild-type IE62, suggesting that other alteration(s) may be responsible for the reduced transactivation activity. Collectively, our results suggest that acquisition of mutations in both Met 99 and the SEAD of IE62 is responsible for the reduced transactivation activity found in IE62 of the VZV vaccine strains and contributes to attenuation of the virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-018-8144-x | DOI Listing |
Elife
December 2024
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.
A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors.
View Article and Find Full Text PDFCardiac regeneration involves the interplay of complex interactions between many different cell types, including cardiomyocytes. The exact mechanism that enables cardiomyocytes to undergo dedifferentiation and proliferation to replace lost cells has been intensely studied. Here we report a single nuclear RNA sequencing profile of the injured zebrafish heart and identify distinct cardiomyocyte populations in the injured heart.
View Article and Find Full Text PDFOsteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.
View Article and Find Full Text PDFBackground: Exposure to endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), disrupts reproduction across generations. Germ cell epigenetic alterations are proposed to bridge transgenerational reproductive defects resulting from EDCs. Previously, we have shown that prenatal exposure to environmentally relevant doses of BPA or its substitute, BPS, caused transgenerationally maintained reproductive impairments associated with neonatal spermatogonial epigenetic changes in male mice.
View Article and Find Full Text PDFPost-translational modifications (PTMs) are critical regulators of protein function and cellular signaling. While histone deacetylation by histone deacetylases (HDACs) is well established, the role of specific HDACs in modulating non-histone protein PTMs, particularly in an infectious context, is poorly understood. Here, we reveal a pivotal role for HDAC6 in orchestrating periodontal inflammation through its dual regulatory effects on FoxO1 acetylation and phosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!