Aim: To evaluate and compare the canal shaping ability of BioRace, ProTaper NEXT and Genius engine-driven nickel-titanium (NiTi) file systems in extracted mandibular first molars using micro-computed tomography (MCT).

Methodology: Sixty mesial root canals of mandibular first molars were randomly divided into three equal groups, according to the instrument system used for root canal preparation (n = 20): BioRace (BR), ProTaper NEXT (PTN) or Genius (GN). Root canals were prepared to the full WL using a crown-down technique up to size 35, .04 taper instruments for BR and GN groups and size 30, .07 taper instruments for the PTN group. MCT was used to scan the specimens before and after canal instrumentation. Changes in dentine volume, the percentage of uninstrumented canal surface and degree of canal transportation were evaluated in the coronal, middle and apical thirds of canals. Data were analysed statistically using one-way analysis of variance and Tuckey's post hoc tests with the significance level set at 5%.

Results: There were no significant differences between the three groups in the terms of dentine removed after preparation and determination of the root canal volume, or percentage of uninstrumented canal surface (P > 0.05). No significant differences were found between the systems for canal transportation in any canal third (P > 0.05).

Conclusions: The shaping ability of the BR, PTN and GN NiTi file systems was equally effective. All instrumentation systems prepared curved root canal systems with no evidence of undesirable changes in 3D parameters or significant shaping errors.

Download full-text PDF

Source
http://dx.doi.org/10.1111/iej.12961DOI Listing

Publication Analysis

Top Keywords

shaping ability
12
biorace protaper
12
mandibular molars
12
root canal
12
canal
10
ability biorace
8
protaper genius
8
canals mandibular
8
niti file
8
file systems
8

Similar Publications

Epipremnum aureum, sometimes known as the Money Plant, is a popular houseplant known for its hearts-shaped leaves and durability. Commonly referred to as Golden Pothos or Devil's Ivy, it is also appreciated for its ornamental value and air cleaning ability. They say that these plants are attractive to many people owing to their tolerance to several conditions and easy care, therefore, it is no surprise that they are found in many households and workplaces.

View Article and Find Full Text PDF

Exploiting supramolecular secondary building units (SSBUs) for developing porous crystalline materials represents an exciting breakthrough that extends the boundaries of reticular chemistry. However, shaping polynuclear clusters sustained by non-covalent interactions for the assembly of hydrogen-bonded frameworks remains a critical challenge. This study presents a novel strategy to stabilize SSBUs by tuning the π-stacking geometry of conjugated building blocks, facilitating the creation of hydrogen-bonded frameworks with tailored architectures for demanding gas separation.

View Article and Find Full Text PDF

Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.

View Article and Find Full Text PDF

Global Aromatic Ring Currents in Neutral Porphyrin Nanobelts.

ACS Nano

January 2025

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.

The ability of a ring-shaped molecule to sustain a global aromatic or antiaromatic ring current when placed in a magnetic field indicates that its electronic wave function is coherently delocalized around its whole circumference. Large molecules that display this behavior are attractive components for molecular electronic devices, but this phenomenon is rare in neutral molecules with circuits of more than 40 π-electrons. Here, we use theoretical methods to investigate how the global ring currents evolve with increasing ring size in cyclic molecular nanobelts built from edge-fused porphyrins.

View Article and Find Full Text PDF

Monkeypox: a re-emergent virus with global health implications - a comprehensive review.

Trop Dis Travel Med Vaccines

January 2025

Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Egypt.

Monkeypox virus (MPXV) is an enclosed, double-stranded DNA virus from the Orthopoxvirus genus, which also contains variola, vaccinia, and cowpox. MPXV, which was once confined to West and Central Africa, has recently had a rebound, spreading beyond its original range since 2017. The virus is distinguished by its unique morphology, which includes an oval or brick-shaped structure and a complex lipid and protein makeup.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!