A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FINGER (Forming and Identifying New Groups of Expected Risks): developing and validating a new predictive model to identify patients with high healthcare cost and at risk of admission. | LitMetric

FINGER (Forming and Identifying New Groups of Expected Risks): developing and validating a new predictive model to identify patients with high healthcare cost and at risk of admission.

BMJ Open

Department of Applied and Structural Economics & History, Faculty of Economics and Business, Universidad Complutense de Madrid, Madrid, Spain.

Published: May 2018

AI Article Synopsis

  • The FINGER model was created to help primary care professionals easily identify patients at high risk for healthcare costs using straightforward clinical criteria.
  • Conducted in the Basque National Health System, this cross-sectional study involved nearly 2 million residents aged 14 and older and assessed the effectiveness of the model over a two-year period.
  • Results showed that FINGER scores could predict high healthcare costs and other outcomes, such as hospital admissions and mortality, with comparable accuracy to existing complex models.

Article Abstract

Objective: Predictive statistical models used in population stratification programmes are complex and usually difficult to interpret for primary care professionals. We designed FINGER (Forming and Identifying New Groups of Expected Risks), a new model based on clinical criteria, easy to understand and implement by physicians. Our aim was to assess the ability of FINGER to predict costs and correctly identify patients with high resource use in the following year.

Design: Cross-sectional study with a 2-year follow-up.

Setting: The Basque National Health System.

Participants: All the residents in the Basque Country (Spain) ≥14 years of age covered by the public healthcare service (n=1 946 884).

Methods: We developed an algorithm classifying diagnoses of long-term health problems into 27 chronic disease groups. The database was randomly divided into two data sets. With the calibration sample, we calculated a score for each chronic disease group and other variables (age, sex, inpatient admissions, emergency department visits and chronic dialysis). Each individual obtained a FINGER score for the year by summing their characteristics' scores. With the validation sample, we constructed regression models with the FINGER score for the first 12 months as the only explanatory variable.

Results: The annual FINGER scores obtained by patients ranged from 0 to 57 points, with a mean of 2.06. The coefficient of determination for healthcare costs was 0.188 and the area under the receiver operating characteristic curve was 0.838 for identifying patients with high costs (>95th percentile); 0.875 for extremely high costs (>99th percentile); 0.802 for unscheduled admissions; 0.861 for prolonged hospitalisation (>15 days); and 0.896 for death.

Conclusion: FINGER presents a predictive power for high risks fairly close to other classification systems. Its simple and transparent architecture allows for immediate calculation by clinicians. Being easy to interpret, it might be considered for implementation in regions involved in population stratification programmes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988109PMC
http://dx.doi.org/10.1136/bmjopen-2017-019830DOI Listing

Publication Analysis

Top Keywords

patients high
12
finger forming
8
forming identifying
8
identifying groups
8
groups expected
8
expected risks
8
identify patients
8
population stratification
8
stratification programmes
8
chronic disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: