The Epstein-Barr virus DNA polymerase was purified from extracts of P3HR-1 cells treated with n-butyrate for induction of the viral cycle. Sequential chromatography on DNA cellulose, phosphocellulose, and blue Sepharose yielded an enzyme preparation purified more than 1,300-fold. The purified enzyme was distinct from cellular enzymes but resembled the viral DNA polymerase in cells infected with herpes simplex virus type 1 or 2. The active enzyme had an apparent molecular weight of 185,000 as estimated by gel filtration on Sephacryl S-300. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major polypeptide corresponding to a molecular weight of ca. 110,000. This polypeptide correlated with the catalytic function of the purified enzyme, whereas the other, less abundant polypeptides did not. By immunoblotting, the 110,000-molecular-weight polypeptide could be identified as a viral polypeptide. It could not be determined whether the native enzyme was composed of more than one polypeptide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC254829 | PMC |
http://dx.doi.org/10.1128/JVI.54.2.561-568.1985 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!