Effect of curcumin on bone tissue in the diabetic rat: repair of peri-implant and critical-sized defects.

Int J Oral Maxillofac Surg

Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil. Electronic address:

Published: November 2018

This study determined the effect of curcumin on bone healing in animals with diabetes mellitus (DM). One hundred rats were divided into five groups: DM+PLAC, DM+CURC, DM+INS, DM+CURC+INS, and non-DM (CURC, curcumin; PLAC, placebo; INS, insulin). Critical calvarial defects were created and titanium implants were inserted into the tibiae. Calvarial defects were analyzed histometrically, and BMP-2, OPN, OPG, RANKL, Runx2, Osx, β-catenin, Lrp-5, and Dkk1 mRNA levels were quantified by PCR. The implants were removed for a torque evaluation, the peri-implant tissue was collected for mRNA quantification of the same bone-related markers, and the tibiae were submitted to micro-computed tomography. The DM+CURC+INS and non-DM groups exhibited greater closure of the calvaria when compared to the DM+PLAC group (P<0.05). Increased retention of implants was observed in the DM+CURC, DM+CURC+INS, and non-DM groups when compared to the DM+PLAC group (P<0.05). CURC improved bone volume and increased bone-implant contact when compared to DM+PLAC (P<0.05). In calvarial samples, CURC favourably modulated RANKL/OPG and Dkk1 and improved β-catenin levels when compared to DM+PLAC (P<0.05). In peri-implant samples, Dkk1 and RANKL/OPG were down-regulated and BMP-2 up-regulated by CURC when compared to DM+PLAC (P<0.05). CURC reverses the harmful effects of DM in bone healing, contributing to the modulation of bone-related markers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijom.2018.04.018DOI Listing

Publication Analysis

Top Keywords

curcumin bone
8
dm+curc+ins non-dm
8
calvarial defects
8
bone tissue
4
tissue diabetic
4
diabetic rat
4
rat repair
4
repair peri-implant
4
peri-implant critical-sized
4
critical-sized defects
4

Similar Publications

Background: Femoral head necrosis (FHN) is a debilitating bone disease affecting an estimated 8 million people worldwide. Although specific drugs for FHN have limitations, targeted therapies have shown promising results. The significance of this study is underscored by the high prevalence of FHN, the limitations of current treatments, and the potential of targeted drugs and natural compounds for effective therapeutic interventions.

View Article and Find Full Text PDF

Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing.

View Article and Find Full Text PDF

Curcumin and bone marrow stem cells (BMSCs)-derived exosomes are considered to be useful for the treatment of many human diseases, including sepsis-associated acute kidney injury (SA-AKI). However, the role and underlying molecular mechanism of curcumin-loaded BMSCs-derived exosomes in the progression of SA-AKI remain unclear. Exosomes (BMSCs-EXO or BMSCs-EXO) were isolated from curcumin or DMSO-treated BMSCs, and then co-cultured with LPS-induced HK2 cells.

View Article and Find Full Text PDF

Purpose: The study evaluated the influence of titanium discs, coated with polyacrylonitrile infused curcumin nanofibers on osteoblast activity.

Materials And Methods: The titanium discs were coated with polyacrylonitrile nanofibers infused with curcumin. MG-63 cell lines were utilized for cell culture to assess osteoblast morphology upon exposure of curcumin on titanium discs.

View Article and Find Full Text PDF

Curcumin liposomes alleviate senescence of bone marrow mesenchymal stem cells by activating mitophagy.

Sci Rep

December 2024

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

The senescence of mesenchymal stem cells (MSCs) is closely related to aging and degenerative diseases. Curcumin exhibits antioxidant and anti-inflammatory effects and has been extensively used in anti-cancer and anti-aging applications. Studies have shown that curcumin can promote osteogenic differentiation, autophagy and proliferation of MSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!