Today, regenerative medicine requires new sources of multipotent stem cells for their differentiation to chondrocytes using the mediums of differentiation available in the market. This study aimed to determine whether the Mesenchymal Stem Cells (MSCs) isolated from Mobilized Peripheral Blood (MPB) in sheep using the Granulocyte Colony-Stimulating Factor (G-CSF), have the ability of first acquire a fibroblast-like morphology after being forced out of the bone marrow niche by G-CSF and second, if the cells have the capacity to express collagen type-II α I in primary culture using a human commercial media of differentiation. Six Suffolk male sheep with age of 2 years were mobilized using G-CSF. One subcutaneous injection of 10 mcg per kilogram of bodyweight were administered every 24 h during three consecutive days. At day four, a sample of 20 mL of peripheral blood was harvested, afterwards, monocytes cells were separated by ficoll gradient. The mobilized MSCs were expanded in primary culture in DMEM medium supplemented with 10% adult sheep serum for three weeks and characterized by an antibody panel for surface markers: CD105, CD90, CD73, CD34, and CD45, before and after primary culture. Subsequently, an aliquot of cells in the first pass were cultured in a commercial human chondrogenic medium for three weeks. As a result, the percentage of surface markers for MSCs (CD105, CD90, CD73) in expanded cells in primary culture significantly increased, at the same time a decrease in the markers for hematopoietic cells (CD34 and CD45) was observed and the cells morphology was fibroblast-like. After three weeks of differentiation culture, the immunofluorescence analysis evidenced the expression of collagen-type-II. It was concluded that Mesenchymal Stem Cells isolated from mobilized peripheral blood in sheep have the ability to pre-differentiate into chondral like cells and express collagen type-II when are stimulated with a human commercial chondrogenic medium in monolayer culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tice.2018.05.007 | DOI Listing |
Stem Cell Rev Rep
January 2025
Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
Background: Conventional post-stroke edema management strategies are limitedly successful as in multiple cases of hemorrhagic transformation is being reported. Clinically, acute-ischemic-stroke (AIS) intervention by endovascular mesenchymal stem cells (MSCs) have shown benefits by altering various signaling pathways. Our previous studies have reported that intra-arterial administration of 1*10 MSCs (IA-MSCs) were beneficial in alleviating post-stroke edema by modulating PKCδ/MMP9/AQP4 axis and helpful in preserving the integrity of blood-brain-barrier (BBB).
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Dipartimento di Medicina Sperimentale, Università di Genova, Viale Benedetto XV, 3, Genova, 16132, Italy.
Progress of human brain in vitro models stands as a keystone in neurological and psychiatric research, addressing the limitations posed by species-specific differences in animal models. The generation of human neurons from induced pluripotent stem cells (iPSCs) using transcription factor reprogramming protocols has been shown to reduce heterogeneity and improve consistency across different stem cell lines. Despite notable advancements, the current protocols still exhibit several shortcomings.
View Article and Find Full Text PDFInt J Hematol
January 2025
Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan.
Chronic graft-versus-host disease (cGVHD) is a major serious complication after allogeneic stem-cell transplantation (allo-HSCT), and often mimics autoimmune diseases. Central nervous system (CNS) symptoms are rare manifestations of cGVHD, and are difficult to diagnose. CNS manifestations of cGVHD were discussed in the 2020 National Institutes of Health cGVHD Consensus Project as one of the "atypical cGVHD manifestations" with involvement of various organ systems other than classical cGVHD organs.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain.
The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!