Automatic fish sounds classification.

J Acoust Soc Am

Chorus, Fondation Grenoble INP, 38000 Grenoble, France.

Published: May 2018

The work presented in this paper focuses on the use of acoustic systems for passive acoustic monitoring of ocean vitality for fish populations. Specifically, it focuses on the use of acoustic systems for passive acoustic monitoring of ocean vitality for fish populations. To this end, various indicators can be used to monitor marine areas such as both the geographical and temporal evolution of fish populations. A discriminative model is built using supervised machine learning (random-forest and support-vector machines). Each acquisition is represented in a feature space, in which the patterns belonging to different semantic classes are as separable as possible. The set of features proposed for describing the acquisitions come from an extensive state of the art in various domains in which classification of acoustic signals is performed, including speech, music, and environmental acoustics. Furthermore, this study proposes to extract features from three representations of the data (time, frequency, and cepstral domains). The proposed classification scheme is tested on real fish sounds recorded on several areas, and achieves 96.9% correct classification compared to 72.5% when using reference state of the art features as descriptors. The classification scheme is also validated on continuous underwater recordings, thereby illustrating that it can be used to both detect and classify fish sounds in operational scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.5036628DOI Listing

Publication Analysis

Top Keywords

fish sounds
12
fish populations
12
focuses acoustic
8
acoustic systems
8
systems passive
8
passive acoustic
8
acoustic monitoring
8
monitoring ocean
8
ocean vitality
8
vitality fish
8

Similar Publications

Exploring offshore particle motion soundscapes.

J Acoust Soc Am

January 2025

Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03823, USA.

Fishes and aquatic invertebrates utilize acoustic particle motion for hearing, and some additionally detect sound pressure. Yet, few underwater soundscapes studies report particle motion, which is often assumed to scale predictably with pressure in offshore habitats. This relationship does not always exist for low frequencies or near reflective boundaries.

View Article and Find Full Text PDF

Maladapted immigrants may reduce wild population productivity and resilience, depending on the degree of fitness mismatch between dispersers and locals. Thus, domesticated individuals escaping into wild populations is a key conservation concern. In Prince William Sound, Alaska, over 700 million pink salmon () are released annually from hatcheries, providing a natural experiment to characterize the mechanisms underlying impacts to wild populations.

View Article and Find Full Text PDF

Marine protected areas (MPAs) are widely implemented tools for long-term ocean conservation and resource management. Assessments of MPA performance have largely focused on specific ecosystems individually and have rarely evaluated performance across multiple ecosystems either in an individual MPA or across an MPA network. We evaluated the conservation performance of 59 MPAs in California's large MPA network, which encompasses 4 primary ecosystems (surf zone, kelp forest, shallow reef, deep reef) and 4 bioregions, and identified MPA attributes that best explain performance.

View Article and Find Full Text PDF

Freshwater ecosystems are highly biodiverse and important for livelihoods and economic development, but are under substantial stress. To date, comprehensive global assessments of extinction risk have not included any speciose groups primarily living in freshwaters. Consequently, data from predominantly terrestrial tetrapods are used to guide environmental policy and conservation prioritization, whereas recent proposals for target setting in freshwaters use abiotic factors.

View Article and Find Full Text PDF

Many animal species are known to show individuality in their acoustic communication. This variation in individual male signatures can be decisive for female choice. Within the damselfishes, Dascyllus species are known for prolific sound production during the realization of movements associated with courtship (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!