Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on the three-dimensional sono-elasticity theory for ship structures, the Green's function is incorporated and an integrated calculation method of acoustic radiation and propagation for floating bodies in shallow water considering the sound velocity profile is proposed. The near-field and arbitrary far-field acoustic radiation problem can be efficiently calculated. A numerical example of a rigid sphere is given and the results are compared with the finite element method solution to validate the reliability and demonstrate improvements in efficiency. The method is applied to an elastic capsular shell, verifying the applicability of the method for any elastic floating bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.5039415 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!