Schistosoma mansoni tegument is a dynamic host-interactive layer that is an essential source of parasite antigens and a relevant field for schistosome vaccine research. Sm21.7 is a cytoskeleton antigen found in S. mansoni tegument that engenders protection in experimental challenge infection. Because of its crucial role in the parasite tegument and its promising protective capability, Sm21.7 is an exciting target for the development of therapeutic strategies. The present study describes Sm21.7 structural and biophysical features using circular dichroism spectroscopy and identifies linear B-cell epitopes of Sm21.7 using in-silico methods and immunoassay. The Sm21.7 gene was cloned into the pETDEST42 vector, and the recombinant protein was overexpressed in Escherichia coli DE3. The soluble protein was purified by affinity chromatography followed by ion-exchange chromatography. Purified recombinant Sm21.7 was analyzed by circular dichroism spectroscopy which demonstrated that the rSm21.7 structure was comprised of approximately 38% α-helices and its conformation remains stable at temperatures of up to 60 °C. Prediction of rSm21.7 B-cell epitopes was based on amino acid physicochemical properties. Sixteen peptides corresponding to predicted epitopes were synthesized and immunoreactivity assessed by spot peptide array using pooled rSm21.7-immunized mice sera or patients' sera with different clinical forms of S. mansoni infection. Immunoassays revealed that sera from rSm21.7-immunized mice reacted predominantly with peptides located in the dynein-light chain domain (DLC) at the C-terminal region of rSm21.7. Comparative analysis of the antibody response of acute, intestinal and hepatosplenic patients' sera to the Sm21.7 peptides showed that a differential recognition pattern of Sm21.7-derived peptides by intestinal patients' sera might contribute to down-regulate the immune response in chronic intestinal patients. Together, the results may help the development of S. mansoni vaccine strategies based on the rSm21.7 antigen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2018.05.019DOI Listing

Publication Analysis

Top Keywords

b-cell epitopes
12
patients' sera
12
linear b-cell
8
sm217
8
recombinant sm217
8
schistosoma mansoni
8
mansoni tegument
8
circular dichroism
8
dichroism spectroscopy
8
rsm217-immunized mice
8

Similar Publications

Cyclic peptides are often used as scaffolds for the multivalent presentation of drug molecules due to their structural stability and constrained conformation. We identified a cyclic deca-peptide incorporating lipoamino acids for delivering T helper and B cell epitopes against group A Streptococcus (GAS), eliciting robust humoral immune responses. In this study, we assessed the function-immunogenicity relationship of the multi-component vaccine candidate (referred to as VC-13) to elucidate a mechanism of action.

View Article and Find Full Text PDF

Dysentery caused by Shigella species remains a major health threat to children in low- and middle-income countries. There is no vaccine available. The most advanced candidates, i.

View Article and Find Full Text PDF

Introduction: HLA matching is critical for successful kidney transplantation. This study aimed to investigate the impact of eplet mismatches and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II) scores on the development of de novo donor-specific antibodies (dnDSA) and graft survival in a Tunisian cohort, characterized by a high prevalence of living donors and significant genetic diversity in HLA profiles.

Methods: This retrospective study included 112 adult kidney transplant recipients who underwent transplantation between 2012 and 2018.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!