Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The synergistic effect of nanosizing and lipid-based drug delivery systems (LBDDS) was explored to enhance formulation drug loading levels and improve drug solubilisation in the gastrointestinal environment. A novel formulation combining drug nanocrystals and silica-lipid hybrid (SLH) microparticles as a solid-state LBDDS was developed for the challenging poorly water-soluble drug, ziprasidone. A ziprasidone nanosuspension was fabricated via high-pressure homogenisation, achieving a mean particle size of 280 nm. In vitro dissolution studies revealed the nanosuspension to exhibit a significant 2.4-fold increase in the extent of drug dissolution, relative to pure drug. Novel ziprasidone nanocrystal-loaded SLH microparticles (ncSLH) were formulated by freeze-drying a precursor drug-loaded emulsion with drug nanocrystals and silica nanoparticles. Drug loading levels were increased at least 17-fold relative to conventional SLH microparticles, resulting in an increase in crystalline drug content and a change in surface atomic composition. The in vitro performance was evaluated by quantifying solubilisation levels during simulated intestinal lipolysis studies. Novel ncSLH significantly improved the in vitro fasted state solubilisation of ziprasidone (up to 4.7-fold), thus indicating the potential for such a formulation to overcome some of the various challenges faced by poorly water-soluble, brick-dust drug molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2018.05.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!