Implementing precision cancer medicine in the genomic era.

Semin Cancer Biol

Department of Internal Medicine, Division of Medical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, United States. Electronic address:

Published: April 2019

The utilization of genomic data to direct treatment for cancer patients represents the central tenet in precision oncology, in which a patient is matched to a specific drug or therapy based on the genetic drivers detected in his or her tumor rather than the tumor's histologic classification. The expected but not always realized outcomes of molecularly matched therapies include increased response rates, more durable responses, deeper responses, and decreased number of therapy-related side effects. In this review, we will discuss different facets of utilizing genomic data to direct the increasingly complex care of cancer patients. We discuss the enlarging compendium of actionable genomic alterations and the development of novel molecular diagnostic assays for clinical application. Finally, we present an overview of the growing number of genomics-driven clinical trials and conclude with a discussion of future challenges in the implementation of precision oncology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2018.05.009DOI Listing

Publication Analysis

Top Keywords

genomic data
8
data direct
8
cancer patients
8
precision oncology
8
implementing precision
4
precision cancer
4
cancer medicine
4
genomic
4
medicine genomic
4
genomic era
4

Similar Publications

Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome.

Genome Biol Evol

January 2025

Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.

This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.

View Article and Find Full Text PDF

Research evidence has demonstrated a significant association between hypertrophic cardiomyopathy (HCM) and atrial fibrillation (AF), but the causality and pattern of this link remain unexplored. Therefore, this study investigated the causal relationship between HCM and AF using a two-sample and bidirectional Mendelian randomization (MR) approach. Additionally, this assessed the role of cardiovascular proteins (CPs) associated with cardiovascular diseases between HCM and AF by applying a two-step MR analysis.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

Caution when using network partners for target identification in drug discovery.

HGG Adv

January 2025

Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; 5 Prime Sciences Inc, Montréal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Twin Research, King's College London, London, UK. Electronic address:

Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicates that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of FDA-approved drugs had targets with direct human genetic evidence.

View Article and Find Full Text PDF

Human outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) are more common in Middle Eastern and Asian human populations, associated with clades A and B. In Africa, where clade C is dominant in camels, human cases are minimal. We reviewed 16 studies (n = 6198) published across seven African countries between 2012 and 2024 to assess human MERS-CoV cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!