Fossil Fuel-Derived Polycyclic Aromatic Hydrocarbons in the Taiwan Strait, China, and Fluxes across the Air-Water Interface.

Environ Sci Technol

State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University, Xiamen , 361102 , China.

Published: July 2018

On the basis of the application of compound-specific radiocarbon analysis (CSRA) and air-water exchange models, the contributions of fossil fuel and biomass burning derived polycyclic aromatic hydrocarbons (PAHs) as well as their air-water transport were elucidated. The results showed that fossil fuel-derived PAHs (an average contribution of 89%) presented the net volatilization process at the air-water interface of the Taiwan Strait in summer. Net volatile fluxes of the dominant fluorene and phenanthrene (>58% of the total PAHs) were 27 ± 2.8 μg m day, significantly higher than the dry deposition fluxes (average 0.43 μg m day). The ΔC contents of selected PAHs (fluorene, phenanthrene plus anthracene, fluoranthene, and pyrene) determined by CSRA in the dissolved seawater ranged from -997 ± 4‰ to -873 ± 6‰, indicating that 89-100% (95 ± 4%) of PAHs were supplied by fossil fuels. The South China Sea warm current originating from the southwest China in summer (98%) and the Min-Zhe coastal current originating from the north China in winter (97%) input more fossil fuel PAHs than the Jiulong River estuary (90%) and Xiamen harbor water (93%). The more radioactive decayed C of fluoranthene (a 4-ring PAH) than that of phenanthrene and anthracene (3-ring PAHs) represented a greater fossil fuel contribution to the former in dissolved seawater.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b01331DOI Listing

Publication Analysis

Top Keywords

fossil fuel
12
fossil fuel-derived
8
polycyclic aromatic
8
aromatic hydrocarbons
8
taiwan strait
8
air-water interface
8
fluorene phenanthrene
8
μg day
8
phenanthrene anthracene
8
dissolved seawater
8

Similar Publications

With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions.

View Article and Find Full Text PDF

Dynamic Methane Emissions from China's Fossil-Fuel and Food Systems: Socioeconomic Drivers and Policy Optimization Strategies.

Environ Sci Technol

January 2025

State Key Laboratory of Marine Resources Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou 570228, China.

In response to the 2023 "Action Plan for Methane Emission Control" in China, which mandates precise methane (CH) emission accounting, we developed a dynamic model to estimate CH emissions from fossil-fuel and food systems in China for the period 1990-2020. We also analyzed their socioeconomic drivers through the Logarithmic Mean Divisia Index (LMDI) model. Our analysis revealed an accelerated emission increase (850.

View Article and Find Full Text PDF

Sensitivity of future regional and global energy markets and macroeconomic activity to a hypothetical global energy market disruption.

iScience

January 2025

Pacific Northwest National Laboratory, Joint Global Change Research Institute, 5825 University Research Court, Suite 3500, College Park, MD 3500, USA.

In this paper we contribute to a long history of research studying interactions between energy systems, international energy trade, and macroeconomic activity. We develop and employ methods to quantify transmission pathways for energy markets to affect the macroeconomy and CO emissions. We track the long-term consequences of a hypothetical permanent disruption to global energy markets, cession of Russian fossil fuel exports, for energy markets, regional and global economic activity (gross domestic product [GDP]), labor and capital markets, and CO emissions against two dramatically different reference scenarios.

View Article and Find Full Text PDF

The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.

View Article and Find Full Text PDF

A photosynthesis-derived bionic system for sustainable biosynthesis.

Angew Chem Int Ed Engl

January 2025

Wuhan University, College of Chemistry and Molecular Sciences, Luojiashan Street, 430072, Wuhan, CHINA.

"Cell factory" strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!