We propose an optoelectronic system for stimulation of living neurons. The system consists of an electronic circuit based on the FitzHugh-Nagumo model, an optical fiber, and a photoelectrical converter. We used this system for electrical stimulation of hippocampal living neurons in acute hippocampal brain slices (350-μm thick) obtained from a 20-28 days old C57BL/6 mouse or a Wistar rat. The main advantage of our system over other similar stimulators is that it contains an optical fiber for signal transmission instead of metallic wires. The fiber is placed between the electronic circuit and stimulated neurons and provides galvanic isolation from external electrical and magnetic fields. The use of the optical fiber allows avoiding electromagnetic noise and current flows which could affect metallic wires. Furthermore, it gives us the possibility to simulate "synaptic plasticity" by adaptive signal transfer through optical fiber. The proposed optoelectronic system (hybrid neural circuit) provides a very high efficiency in stimulating hippocampus neurons and can be used for restoring brain activity in particular regions or replacing brain parts (neuroprosthetics) damaged due to a trauma or neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983492PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198396PLOS

Publication Analysis

Top Keywords

optical fiber
16
optoelectronic system
12
living neurons
8
electronic circuit
8
metallic wires
8
system
5
fiber
5
brain
4
system brain
4
brain neuronal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!