We report on the use of electrospray atomization to deliver nanoparticles and surfactant directly to the surface of sessile droplets. The particles delivered to the target droplet remained adsorbed at its interface since they arrived solvent-free. Upon complete evaporation, the interface of the target drop was mapped to the underlying substrate, forming a nanoparticle deposit. The use of electrospray permitted the exploration of the interfacial particle transport and the role of surfactants in governing particle motion and deposit structure. When no surfactant was present in the sprayed solution, there was no observable convection of the interfacial particles. When Tween 80, a high-molecular-weight surfactant, was added to the sprayed solution, the surface flow was similarly suppressed. Only when small surfactants (e.g., sodium dodecyl sulfate) were present in the sprayed solution was Marangoni flow, directed toward the droplet apex, induced at the interface. This flow drove the interfacial particles to the apex of the target droplet, creating a particle-dense region at the center of the final deposit. We found that small surfactants were capable of desorbing from the interface at a sufficiently high rate relative to the evaporation time scale of the target droplet. Once inside the drop, the desorbed surfactant was convected to the contact line where it accumulated, inducing a surface tension gradient and a solutal Marangoni flow. Numerical modeling using the lattice Boltzmann-Brownian dynamics method confirmed this mechanism of particle transport and its relationship to deposit structure. The use of sacrificial targets combined with electrospray may provide a unique capability for building colloidal monolayers with organized structure in a scalable way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b01308 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202. Electronic address:
The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).
View Article and Find Full Text PDFAnal Chem
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
Multiplex digital nucleic acid analysis (NAA) allows the precise quantification of multiple target nucleic acids with single-molecule sensitivity, making it highly appealing for life science research and clinical diagnostics. Nucleic acid-guided endonucleases, such as CRISPR, have demonstrated great potential in digital NAA. However, performing multiplex digital NAA with an endonuclease remains challenging.
View Article and Find Full Text PDFJ Gastrointest Cancer
January 2025
Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer-related death by 2030. Early identification is rare, with a 5-year overall survival (OS) of less than 10%. Advances in the understanding of PDAC tumor biology are needed to improve these outcomes.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!