Experimental measurements were recently made which displayed characteristics of plane wave propagation through anisotropic optical turbulence. A near-plane wave beam was propagated a distance of 1 and 2 km at a height of 2 m above the concrete runway at the Shuttle Landing Facility, Kennedy Space Center, Florida, during January and February of 2017. The spatial-temporal fluctuations of the beam were recorded, and the covariance of intensity was calculated. These data sets were compared to a theoretical calculation of covariance of intensity for a plane wave.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.002607 | DOI Listing |
Pediatr Cardiol
January 2025
Echocardiography Laboratory, Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil.
This study aimed to evaluate the hemodynamic and ventricular performance of neonates with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia using conventional and advanced echocardiographic techniques. This observational, prospective study included 22 neonates with HIE matched with 22 healthy neonates. Echocardiographic studies were performed 24 h after achieving target temperature during hypothermia and 24 h after rewarming.
View Article and Find Full Text PDFJ Mol Model
January 2025
Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.
Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China.
A stacked metamaterial MEMS (meta-MEMS) chip is proposed, which can perfectly absorb electromagnetic waves, convert them into mechanical energy, drive movement of the optical micro-reflectors array, and detect millimeter waves. It is equivalent to using visible light to image a millimeter wave. The meta-MEMS adopts the design of upper and lower chip separation and then stacking to achieve the "dielectric-resonant-air-ground" structure, reduce the thickness of the metamaterial and MEMS structures, and improve the performance of millimeter wave imaging.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215613, China.
Ultrasound blood flow imaging plays a crucial role in the diagnosis of cardiovascular and cerebrovascular diseases. Conventional ultrafast ultrasound plane-wave imaging techniques have limited capabilities in microvascular imaging. To enhance the quality of blood flow imaging, this study proposes a microbubble-based H-Scan ultrasound imaging technique.
View Article and Find Full Text PDFNanotechnology
January 2025
University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, UMR 8520-IEMN, F-59000 Lille, France.
InSb is a material of choice for infrared as well as spintronic devices but its integration on large lattice mismatched semi-insulating III-V substrates has so far altered its exceptional properties. Here, we investigate the direct growth of InSb on InP(111)substrates with molecular beam epitaxy. Despite the lack of a thick metamorphic buffer layer for accommodation, we show that quasi-continuous thin films can be grown using a very high Sb/In flux ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!