A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dietary nitrate supplementation reduces low frequency blood pressure fluctuations in rats following distal middle cerebral artery occlusion. | LitMetric

Dietary nitrate supplementation reduces low frequency blood pressure fluctuations in rats following distal middle cerebral artery occlusion.

J Appl Physiol (1985)

Department of Surgery and Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington , New Zealand.

Published: September 2018

It is known that high blood pressure variability (BPV) in acute ischemic stroke is associated with adverse outcomes, yet there are no therapeutic treatments to reduce BPV. Studies have found increasing nitric oxide (NO) bioavailability improves neurological function following stroke, but whether dietary nitrate supplementation could reduce BPV remains unknown. We investigated the effects of dietary nitrate supplementation on heart rate (HR), blood pressure (BP), and beat-to-beat BPV using wireless telemetry in a rat model of distal middle cerebral artery occlusion. Blood pressure variability was characterized by spectral power analysis in the low frequency (LF; 0.2-0.6 Hz) range prestroke and during the 7 days poststroke in a control group ( n = 8) and a treatment group ( n = 8, 183 mg/l sodium nitrate in drinking water). Dietary nitrate supplementation moderately reduced systolic BPV in the LF range by ~11% compared with the control group ( P = 0.03), while resting BP and HR were not different between the two groups ( P = 0.28 and 0.33, respectively). Despite systolic BPV being reduced with dietary nitrate, we found no difference in infarct volumes between the treatment and the control groups (1.59 vs. 1.62 mm, P = 0.86). These findings indicate that dietary nitrate supplementation is effective in reducing systolic BPV following stroke without affecting absolute BP. In light of mounting evidence linking increased BPV with poor stroke patient outcome, our data support the role of dietary nitrate as an adjunct treatment following ischemic stroke. NEW & NOTEWORTHY Using a rat model of stroke, we found that dietary nitrate supplementation reduced low frequency blood pressure fluctuations following stroke without affecting absolute blood pressure values. Since blood pressure fluctuations are associated with poor clinical outcome in stroke patients, our findings indicate that dietary nitrate could be an effective strategy for reducing blood pressure fluctuations, which could help reduce stroke severity and improve patient recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01081.2017DOI Listing

Publication Analysis

Top Keywords

dietary nitrate
36
blood pressure
32
nitrate supplementation
24
pressure fluctuations
16
low frequency
12
systolic bpv
12
dietary
9
stroke
9
nitrate
9
blood
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!