Alzheimer's Disease (AD) is the most common cause of dementia in the elderly. Centenarians - reaching the age of >100 years while maintaining good cognitive skills - seemingly have unique biological features allowing healthy aging and protection from dementia. Here, we studied the expression of SIRT1 along with miR-132 and miR-212, two microRNAs known to regulate SIRT1, in lymphoblastoid cell lines (LCLs) from 45 healthy donors aged 21 to 105 years and 24 AD patients, and in postmortem olfactory bulb and hippocampus tissues from 14 AD patients and 20 age-matched non-demented individuals. We observed 4.0-fold (P = 0.001) lower expression of SIRT1, and correspondingly higher expression of miR-132 (1.7-fold; P = 0.014) and miR-212 (2.1-fold; P = 0.036), in LCLs from AD patients compared with age-matched healthy controls. Additionally, SIRT1 expression was 2.2-fold (P = 0.001) higher in centenarian LCLs compared with LCLs from individuals aged 56-82 years; while centenarian LCLs miR-132 and miR-212 indicated 7.6-fold and 4.1-fold lower expression, respectively. Correlations of SIRT1, miR-132 and miR-212 expression with cognitive scores were observed for AD patient-derived LCLs and postmortem AD olfactory bulb and hippocampus tissues, suggesting that higher SIRT1 expression, possibly mediated by lower miR-132 and miR-212, may protect aged individuals from dementia and is reflected in their peripheral tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981646 | PMC |
http://dx.doi.org/10.1038/s41598-018-26547-6 | DOI Listing |
Epilepsia
December 2024
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Objective: To test a hypothesis that acutely regulated plasma microRNAs (miRNAs) can serve as prognostic biomarkers for the development of post-traumatic epilepsy (PTE).
Methods: Adult male Sprague-Dawley rats (n = 245) were randomized to lateral fluid-percussion-induced traumatic brain injury (TBI) or sham operation at three study sites (Finland, Australia, United States). Video-electroencephalography (vEEG) was performed on the seventh post-injury month to detect spontaneous seizures.
Front Pharmacol
August 2024
Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
Chronic alcoholism is one of the most common neurological diseases in modern society. However, the key mechanisms underlying learning and memory impairments caused by chronic alcohol exposure remain unclear. In this study, a microRNA-messenger RNA (miRNA-mRNA) network was constructed to explore the potential function of key genes in chronic alcohol exposure, their effects on the hippocampus, and their mechanisms which facilitate brain injury in mice.
View Article and Find Full Text PDFMol Cells
July 2024
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA. Electronic address:
Although binge alcohol-induced gut leakage has been studied extensively in the context of reactive oxygen species-mediated signaling, it was recently revealed that post-transcriptional regulation plays an essential role as well. Ethanol (EtOH)-inducible cytochrome P450-2E1 (CYP2E1), a key enzyme in EtOH metabolism, promotes alcohol-induced hepatic steatosis and inflammatory liver disease, at least in part by mediating changes in intestinal permeability. For instance, gut leakage and elevated intestinal permeability to endotoxins have been shown to be regulated by enhancing CYP2E1 mRNA and CYP2E1 protein levels.
View Article and Find Full Text PDFFront Psychiatry
May 2024
Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
FASEB J
May 2024
Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!