A bioinspired fluorophore that is analogous to the substrate in the bioluminescence of fireflies was prepared and reacts when exposed to weak blue LED light. Upon excitation, this material is photodecarboxylated with a nearly 81-fold enhancement of the solid-state emission, the fluorescence quantum yield of the product in solution is approximately 90 %, and violent disintegrative effects occur as a result of the release of carbon dioxide. Crystallographic and computational results, together with global spectral analysis of the kinetics, confirmed that most of the emission observed in the decay-associated spectra is intrinsic to the product molecule, with only a minor contribution from an excimer through π-π stacking of the molecules in the crystal.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201803424DOI Listing

Publication Analysis

Top Keywords

turning solid-state
4
solid-state fluorescence
4
fluorescence light
4
light bioinspired
4
bioinspired fluorophore
4
fluorophore analogous
4
analogous substrate
4
substrate bioluminescence
4
bioluminescence fireflies
4
fireflies prepared
4

Similar Publications

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Crystal structure determination is a crucial aspect of almost every branch of the chemical sciences, bringing us closer to understanding crystallization, polymorphism, phase transitions, and the relationship between a structure and its physicochemical and functional properties. Unfortunately, many molecules notoriously crystallize as microcrystalline powders, providing a significant challenge in establishing their structures. In this work, we describe the crystal structure determination of three elusive polymorphs of the anti-inflammatory drug meloxicam (MLX) using three approaches, of which only one was successful for each crystal phase.

View Article and Find Full Text PDF

NMR Spectroscopic Reference Data of Synthetic Cannabinoids Sold on the Internet.

Magn Reson Chem

January 2025

Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria.

Besides classic illegal drugs, numerous designer drugs, also called new psychoactive substances (NPSs), are available on the global drug market. One of the biggest and fastest-growing substance classes comprises the synthetic cannabinoids. According to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), 254 out of 950 monitored substances belong to this group of NPS, with 9 new cannabinoids registered for the first time in 2023.

View Article and Find Full Text PDF

For millennia, alloying has been the greatest gift from metallurgy to humankind: a process of mixing elements, propelling our society from the Bronze Age to the Space Age. Dealloying, by contrast, acts like a penalty: a corrosive counteracting process of selectively removing elements from alloys or compounds, degrading their structural integrity over time. We show that when these two opposite metallurgical processes meet in a reactive vapor environment, profound sustainable alloy design opportunities become accessible, enabling bulk nanostructured porous alloys directly from oxides, with zero carbon footprint.

View Article and Find Full Text PDF

Development of Aromatic Organic Materials for High-Performance Lithium-on Batteries: Strategies, Advances and Future Perspectives.

ChemSusChem

December 2024

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, 225002 Jiangsu Province, P. R. China.

Ever since lithium-ion batteries (LIBs) were successfully commercialized, aromatic compounds have attended every turning point in optimizing electrolytes, separators, and even electrode materials. However, the contribution of aromatic compounds has always been neglected compared to other advanced materials. At the same time, designing next-generation LIBs with higher flexibility, solid-state electrolytes, high energy density, and better Coulombic Efficiency (CE) has imposed stricter duties on aromatic components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!