Chelation of iron and zinc in wheat as phytates lowers their bio-accessibility. Steeping and germination (15 °C, 120 h) lowered phytate content from 0.96% to only 0.81% of initial dry matter. A multifactorial experiment in which (steeped/germinated) wheat was subjected to different time (2-24 h), temperature (20-80 °C) and pH (2.0-8.0) conditions showed that hydrothermal processing of germinated (15 °C, 120 h) wheat at 50 °C and pH 3.8 for 24 h reduced phytate content by 95%. X-ray absorption near-edge structure imaging showed that it indeed abolished chelation of iron to phytate. It also proved that iron was oxidized during steeping, germination and hydrothermal processing. It was further shown that zinc and iron bio-accessibility were respectively 3 and 5% in wheat and 27 and 37% in hydrothermally processed wheat. Thus, hydrothermal processing of (germinated) wheat paves the way for increasing elemental bio-accessibility in whole grain-based products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2018.04.125 | DOI Listing |
J Colloid Interface Sci
January 2025
Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, PR China; School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, PR China. Electronic address:
Nowadays, the limited electronic conductivity and structural deterioration during battery cycling have hindered the widespread application of NaV(PO) (NVP). In response to these challenges, we advocate for a technique involving the application of carbon modifications to NVP to enhance its suitability as cathode material. This work involves the synthesis of N/Cl co-modified in situ carbon coatings derived from clozapine (CZP) through a facile hydrothermal route.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Chongqing College of Mobile Communication, Chongqing, 401520, China.
In this study, a simple and efficient method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) has been developed through a one-step hydrothermal process using hedyotis diffusa willd. The morphology, chemical composition, and optical properties of the resulting N-CQDs were thoroughly characterized. The synthesized N-CQDs exhibited a spherical shape with an average particle size of 4.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.
View Article and Find Full Text PDFEnviron Res
January 2025
Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:
This work explores the synergies between N-rich (Chlorella pyrenoidosa) and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Physics and Electronic Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan 030006 China
This study investigates the impact of integrating g-CN into CuCoO electrodes on electrochemical performance working as binder-free electrodes. Flower-like CuCoO nanostructures on nickel foam are decorated with few-layer g-CN using a secondary hydrothermal process. The hierarchical g-CN/CuCoO nanoflower electrode demonstrates a specific capacity of 247.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!