Preparation and mechanistic aspect of natural xanthone functionalized gold nanoparticle.

Mater Sci Eng C Mater Biol Appl

School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni 752050, Odisha, India. Electronic address:

Published: September 2018

Herein, a facile scale up and shape variable synthesis of gold nanoparticle (AuNP) and reaction mechanism by natural xanthone derivative (mangiferin) has been reported. Mangiferin (CHO; 1,3,6,7-tetrahydroxyxanthone-C2-β-d-glucoside), a xanthone derivative is isolated from Mangifera indica L. leaves which efficiently reduces Au ions to Au and stabilizes the formed AuNP. The structural, optical and plasmonic properties of synthesized AuNP have been investigated through different instrumental techniques like UV-Vis and FTIR spectroscopy, powder XRD, FESEM and TEM analysis. It is observed that variation of the concentration of Au ions and mangiferin has a great effect on controlling size and shape of nanoparticles. The role of reaction temperature is also notable. An interesting observation is that with same concentration ratio of HAuCl/mangiferin (0.025 mM/0.002%) at the room temperature kidney shaped AuNP is produced, whereas it is spherical at boiling temperature. Moreover, mangiferin allows high scale synthesis of AuNPs (0.025 mM to 10 mM) without changing the particles size and shape. The mechanistic investigation through UV-Vis, FTIR and GCMS analyses reveal the cleavage of glucose unit and oxidation of phenolic OH groups during AuNP formation. Non-toxicity of mangiferin conjugated AuNP on normal human breast cell line (MCF-10A) suggesting its future application as a drug delivery system and other related medicinal purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.04.091DOI Listing

Publication Analysis

Top Keywords

natural xanthone
8
gold nanoparticle
8
xanthone derivative
8
uv-vis ftir
8
size shape
8
aunp
6
mangiferin
5
preparation mechanistic
4
mechanistic aspect
4
aspect natural
4

Similar Publications

Fructose-driven metabolic disorders, such as obesity, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and type 2 diabetes, are significant global health challenges. Ketohexokinase C (KHK-C), a key enzyme in fructose metabolism, is a promising therapeutic target. α-Mangostin, a naturally occurring prenylated xanthone, has been identified as an effective KHK-C inhibitor, prompting exploration of its analogs for enhanced efficacy.

View Article and Find Full Text PDF

Aspergixanthones L-T, nine undescribed prenylxanthone derivatives from Aspergillus stellatus.

Phytochemistry

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. Electronic address:

Nine undescribed prenylxanthone derivatives, aspergixanthones L-T (1-9), were isolated from the fungus Aspergillus stellatus. Compound 4 represents the first propionylated prenylxanthone, while compounds 7-9 are the first examples of prenylxanthones adorned with a 2,3-butanediol group. Their structures with absolute configurations were elucidated based on comprehensive spectroscopic analyses, ECD calculation, single-crystal X-ray diffraction, Mo(OAc) induced ECD experiment, and Mosher's method.

View Article and Find Full Text PDF

Separation of Three Polar Compounds with Similar Polarities from Swertia mussotii by a Combination of Two Counter-Current Chromatography Modes.

J Chromatogr Sci

January 2025

Characteristic Biology Resources Research Center, Northwest Institute of Plateau Biology, Chinese Academy of Science, No. 23, Xinning Road, Chengxi District, Xining, Qinghai 810001, P. R. China.

Separation of polar compounds especially with similar polarities is challenging. In the present study, three polar compounds with similar polarities, including gentiopicroside, sweroside and mangiferin, have been successfully separated from Swertia mussotii by a combination of two counter-current chromatography modes. With the selected solvent system of ethyl acetate/n-butanol/water (8/2/10, v/v), a continuous injection mode was firstly employed.

View Article and Find Full Text PDF

[Advances in pharmacological mechanism and toxicology of gambogic acid].

Zhongguo Zhong Yao Za Zhi

December 2024

Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Chengdu 610072,China Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China Chengdu 610072, China.

Gambogic acid, a caged xanthone compound derived from Garcinia, has been proven to be an important substance basis for the pharmacological effects of the plant. In recent years, it has received continuous attention due to its broad and significant pharmacological activities. Modern pharmacological investigations have demonstrated that gambogic acid endows various therapeutic effects such as anti-inflammatory, antioxidant, and anti-tumor activities, as well as benefits in retinopathy, organ protection, anti-microbial infection, bone protection, and neuropathic pain relief.

View Article and Find Full Text PDF

Occurrence analysis of alpha-mangostin from different organs of L.

Nat Prod Res

January 2025

Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang, Malaysia.

Alpha-mangostin (AM) is a naturally occurring xanthone with remarkable pharmacological properties, including anti-inflammatory, anti-bacterial, and antioxidant effects. The compound is commonly extracted from the pericarps of L. fruits, but its seasonal availability is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!