In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2018.04.012 | DOI Listing |
Eur J Hum Genet
January 2025
Institute for Genomic Statistics and Bioinformatics, Bonn, NRW, Germany.
The facial gestalt (overall facial morphology) is a characteristic clinical feature in many genetic disorders that is often essential for suspecting and establishing a specific diagnosis. Therefore, publishing images of individuals affected by pathogenic variants in disease-associated genes has been an important part of scientific communication. Furthermore, medical imaging data is also crucial for teaching and training deep-learning models such as GestaltMatcher.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.
View Article and Find Full Text PDFCommun Biol
January 2025
University of Twente, Enschede, The Netherlands.
Deep learning classification models based on Convolutional Neural Networks (CNNs) are increasingly used in population genetic inference for detecting signatures of natural selection. Prevailing detection methods treat the design of the classifier as a discrete phase, assuming that high classification accuracy is the sole prerequisite for precise detection. This frequently steers method development toward classification-driven optimizations that can inadvertently impede detection.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nephrology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan.
To decrease the number of chronic kidney disease (CKD), early diagnosis of diabetic kidney disease is required. We performed invariant information clustering (IIC)-based clustering on glomerular images obtained from nephrectomized kidneys of patients with and without diabetes. We also used visualizing techniques (gradient-weighted class activation mapping (Grad-CAM) and generative adversarial networks (GAN)) to identify the novel and early pathological changes on light microscopy in diabetic nephropathy.
View Article and Find Full Text PDFSci Rep
January 2025
Hive AI Innovation Studio, Department of Computer Science and Engineering, University of Louisville, Louisville, KY, 40292, USA.
Nailfold Capillaroscopy (NFC) is a simple, non-invasive diagnostic tool used to detect microvascular changes in nailfold. Chronic pathological changes associated with a wide range of systemic diseases, such as diabetes, cardiovascular disorders, and rheumatological conditions like systemic sclerosis, can manifest as observable microvascular changes in the terminal capillaries of nailfolds. The current gold standard relies on experts performing manual evaluations, which is an exhaustive time-intensive, and subjective process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!