Previous reports on the fine structure of lizard epidermis are confirmed and extended by SEM and TEM observations of cell differentiation and the form of shed material from the American anole Anolis carolinensis. Attention is drawn to two issues: 1) the tips of the spinules arising from the mature oberhautchen are markedly curved; this morphology can be seen during differentiation; 2) the median keels of scales from all parts of the body show "naked" oberhautchen cells that lack characteristic spinules, but have a membrane morphology comprising a complex system of serpentine microridges. Maderson's ([1966] J. Morphol. 119:39-50) "zip-fastener" model for the role of the shedding complex formed by the clear layer and oberhautchen is reviewed and extended in the light of recent SEM data. Apparently periodic lepidosaurian sloughing permits somatic growth; understanding how the phenomenon is brought about requires integration of data from the organismic to the molecular level. The diverse forms of integumentary microornamentation (MO) reported in the literature can be understood by considering how the cellular events occurring during the renewal phase prior to shedding relate to the emergence of the form-function complex of the β-layer, which provides physical protection. Issues concerning the evolutionary origin of lepidosaurian skin-shedding are discussed. J. Morphol. 236:1-24, 1998. © 1998 Wiley-Liss, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-4687(199804)236:1<1::AID-JMOR1>3.0.CO;2-BDOI Listing

Publication Analysis

Top Keywords

ultrastructural contributions
4
contributions understanding
4
understanding cellular
4
cellular mechanisms
4
mechanisms involved
4
involved lizard
4
lizard skin
4
skin shedding
4
shedding comments
4
comments function
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!