Comparative studies on scale structure and development in bony fish have led to the hypothesis that elasmoid scales in teleosts could be dental in origin. The present work was undertaken to determine whether the scales in zebrafish (Danio rerio), a species widely used in genetics and developmental biology, would be an appropriate focus for further studies devoted to the immunodetection of dental components or to the detection of the expression of genes coding for various dental proteins in fish scales. The superficial region of mature and experimentally regenerated scales and its relationships to the epidermal cover were studied in adult zebrafish using scanning (SEM) and transmission (TEM) electron microscopy. The elasmoid scales are relatively large, thin, and are located in the upper region of the dermis, close to the epidermis. In adults, the surface of the posterior region appears smooth at the SEM level and is entirely covered by the epidermis. During regeneration, the relationship of the epidermal cover to the scale surface is established within 4 days. This interface is easier to study in regenerating than in mature scales because the former are poorly mineralized. TEM revealed that: (1) the epidermis is in direct contact with the scale surface, from which it is separated only by a basement membrane-like structure, (2) there are no dermal elements at the scale surface except at the level of grooves issuing from the focus and crossing the scale surface radially, (3) the mineral crystals located in this superficial region are perpendicular to the scale surface, whereas those located deeper within the collagenous scale matrix are randomly disposed, and (4) when decalcified, the matrix of the superficial region of the scale appears devoid of collagen fibrils but contains thin electron-dense granules, some of which are arranged into layers. The continuous epidermal covering, the absence of dermal elements, as well as the fine structure of the matrix and its type of mineralization, strongly suggest that epidermal products, possibly enamel-like proteins, are deposited at the scale surface and contribute to the thickening of the upper layer in zebrafish scales. J. Morphol. 231:161-174, 1997. © 1997 Wiley-Liss, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-4687(199702)231:2<161::AID-JMOR5>3.0.CO;2-H | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!