Quantification of inhaled aerosol particles composed of toxic household disinfectant using radioanalytical method.

Chemosphere

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:

Published: September 2018

To assess the risk posed by a toxic chemical to human health, it is essential to quantify its uptake in a living subject. This study aims to investigate the biological distribution of inhaled polyhexamethylene guanidine (PHMG) aerosol particle, which is known to cause severe pulmonary damage. By labeling with indium-111 (In), we quantified the uptake of PHMG for up to 7 days after inhalation exposure in rats. The data demonstrate that PHMG is only slowly cleared, with approximately 74% of inhaled particles persisting in the lungs after 168 h. Approximately 5.3% of inhaled particles were also translocated to the liver after 168 h, although the level of redistribution to other tissues, including the kidneys and spleen, was minimal. These observations suggest that large uptake and slow clearance may underlie the fatal inhalation toxicity of PHMG in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.05.132DOI Listing

Publication Analysis

Top Keywords

inhaled particles
8
quantification inhaled
4
inhaled aerosol
4
aerosol particles
4
particles composed
4
composed toxic
4
toxic household
4
household disinfectant
4
disinfectant radioanalytical
4
radioanalytical method
4

Similar Publications

/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.

View Article and Find Full Text PDF

The work aims to develop mucoadhesive and thermo-responsive in situ gelling systems, using hydrophobically-modified hydroxypropyl-methyl cellulose (Sangelose, SG) and beta-cyclodextrin (β-CD) derivatives, for preventing viral respiratory infections. Eight SG/CD systems with varying CD concentrations were evaluated for rheological properties, mucoadhesiveness, spreadability and sprayability via nasal devices; cytotoxicity was in vitro investigated on reconstituted nasal epithelia. Additionally, droplet size distribution and spray deposition were assessed for the most promising systems.

View Article and Find Full Text PDF

The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.

View Article and Find Full Text PDF

Introduction: Exposure to particulate matter ≤2.5 μm in diameter (PM) is associated with adverse respiratory outcomes, including alterations to lung morphology and function. These associations were reported even at concentrations lower than the current annual limit of PM.

View Article and Find Full Text PDF

IgA class switching enhances neutralizing potency against SARS-CoV-2 by increased antibody hinge flexibility.

Antiviral Res

January 2025

School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety. Electronic address:

IgA antibodies are critical components of the mucosal immune barrier, providing essential first-line defense against viral infections. In this study, we investigated the impact of antibody class switching on neutralization efficacy by engineering recombinant antibodies of different isotypes (IgA1, IgG1) with identical variable regions from SARS-CoV-2 convalescent patients. A potent, broad-spectrum neutralizing monoclonal antibody CAV-C65 exhibited a ten-fold increase in neutralization potency upon switching from IgG1 to IgA1 monomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!