AI Article Synopsis

  • Heat shock significantly impacts plant growth by altering chloroplast gene expression in Arabidopsis thaliana, leading to an initial decrease in many transcript levels followed by a rebound for some genes.
  • During heat stress, certain genes, particularly those associated with photosystems, exhibit complex transcript dynamics, including temporary increases and eventual reductions, highlighting the stress response mechanisms.
  • The study suggests that heat stress affects transcript levels via a combination of chloroplast and nuclear gene expression changes, with specific mutants showing impaired responses due to genetics.

Article Abstract

Heat shock is one of the major abiotic factors that causes severe retardation in plant growth and development. To dissect the principal effects of hyperthermia on chloroplast gene expression, we studied the temporal dynamics of transcript accumulation for chloroplast-encoded genes in Arabidopsis thaliana and genes for the chloroplast transcription machinery against a background of changes in physiological parameters. A marked reduction in the transcript amounts of the majority of the genes at the early phases of heat shock (HS) was followed by a return to the baseline levels of rbcL and the housekeeping genes clpP, accD, rps14 and rrn16. The decline in the mRNA levels of trnE (for tRNA) and the PSI genes psaA and psaB was opposed by the transient increase in the transcript accumulation of ndhF and the PSII genes psbA, psbD, and psbN and their subsequent reduction with the development of stress. However, the up-regulation of PSII genes in response to elevated temperature was absent in the heat stress-sensitive mutants abi1 and abi2 with the impaired degradation of D2 protein. The expression of rpoA and rpoB, which encode subunits of PEP, was strongly down-regulated throughout the duration of the heat treatment. In addition, heat stress-induced PEP deficiency caused the compensatory up-regulation of the genes for the nuclear-encoded RNA polymerases RPOTp and RPOTmp, the PEP-associated proteins PAP6 and PAP8, the Ser/Thr protein kinase cPCK2, and the stress-inducible sigma factor gene SIG5. Thus, heat stress differentially modulates the transcript accumulation of plastid-encoded genes in A. thaliana at least in part via the expression of HS-responsive nuclear genes for the plastid transcription machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2018.05.023DOI Listing

Publication Analysis

Top Keywords

transcript accumulation
12
genes
11
heat stress
8
chloroplast-encoded genes
8
heat shock
8
transcription machinery
8
psii genes
8
heat
7
differential impact
4
impact heat
4

Similar Publications

The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice.

View Article and Find Full Text PDF

mRNA export factors store nascent transcripts within nuclear speckles as an adaptive response to transient global inhibition of transcription.

Mol Cell

January 2025

Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

Several transcription inhibitors have been developed as cancer therapies. However, they show modest clinical activity, highlighting that our understanding of the cellular response to transcriptional inhibition remains incomplete. Here we report that potent inhibitors of transcription not only impact mRNA output but also markedly impair mRNA transcript localization and nuclear export.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!