To fend off microbial pathogens and herbivores, plants have evolved a wide range of defense strategies such as physical barriers, or the production of anti-digestive proteins or bioactive specialized metabolites. Accumulation of the latter compounds is often regulated by transcriptional activation of the biosynthesis pathway genes by the phytohormone jasmonate-isoleucine. Here, we used our recently developed flower petal transformation method in the medicinal plant Catharanthus roseus to shed light on the complex regulatory mechanisms steering the jasmonate-modulated biosynthesis of monoterpenoid indole alkaloids (MIAs), to which the anti-cancer compounds vinblastine and vincristine belong. By combinatorial overexpression of the transcriptional activators BIS1, ORCA3 and MYC2a, we provide an unprecedented insight into the modular transcriptional control of MIA biosynthesis. Furthermore, we show that the expression of an engineered de-repressed MYC2a triggers a tremendous reprogramming of the MIA pathway, finally leading to massively increased accumulation of at least 23 MIAs. The current study unveils an innovative approach for future metabolic engineering efforts for the production of valuable bioactive plant compounds in non-model plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymben.2018.05.016 | DOI Listing |
Molecules
December 2024
Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China.
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of , a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (- and -), 20 triterpenoids (, , and -), and 8 phenylpropanoids (-). Among these, amabiliosides A () and B () represent previously undescribed bis-iridoid glycosides, while amabiliosides C () and D () feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro--carboline-5-carboxylic acid moiety.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
Inflammation assumes a vital role in the pathogenesis of depression and in antidepressant treatment. Paeoniflorin (PF), a monoterpene glycoside analog possessing anti-inflammatory attributes, exhibits therapeutic efficacy on depression-like behavior in mice. The objective of this study was to evaluate the antidepressant effects of PF on depression elicited by the chronic unpredictable mild stress (CUMS) model and the precise neural sequence associated with the inflammatory process.
View Article and Find Full Text PDFPhytochemistry
March 2025
School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China. Electronic address:
Voagafries A-E, five undescribed monoterpenoid indole alkaloids (MIAs), were isolated from the stem bark of Voacanga africana. Voagafrie A (1) has a unique 6/5/5/6/6 spiral ring skeleton with an indolone-fused 9-oxo-3-aza-tricyclo[6,3,1,0]-12-alkane-10-carbonyllactone. Voagafrie B (2) is a rare 5,6-seco diazine scaffold, whereas voagafrie C (3) possesses an octahydropyrrolo[2,3-b] pyrrole-fused 2,8-diazabicyclo[3.
View Article and Find Full Text PDFFitoterapia
January 2025
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China. Electronic address:
Alstoscholarisine L is an architecturally complex monoterpenoid indole alkaloid with a unique ring fusion pattern, isolated from the leaves of Alstonia scholaris. The 6/5/5/6/6/6-membered rings contain two lactonic rings and one aminal carbon and possess seven contiguous aligned stereocenters, three of which are quaternary. Its structure was elucidated by extensive spectroscopic data analyses, quantum chemical computations, and single-crystal X-ray diffraction.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France. Electronic address:
Monoterpene indole alkaloids (MIAs) are valuable metabolites produced in numerous medicinal plants from the Apocynaceae family such as Alstonia scholaris, which synthesizes strictamine, a MIA displaying neuropharmacological properties of a potential importance. To get insights into the MIA metabolism in A. scholaris, we studied here both the spatial and transcriptional regulations of MIA genes by performing a robust transcriptomics analysis of the main plant organs, leaf epidermis but also by sequencing RNA from leaves transiently overexpressing the master transcriptional regulator MYC2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!