Eating palatable foods can provide stress relief, but the mechanisms by which this occurs are unclear. We previously characterized a limited sucrose intake (LSI) paradigm in which twice-daily access to a small amount of 30% sucrose (vs. water as a control) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress and alters neuronal activation in stress-regulatory brain regions in male rats. However, women may be more prone to 'comfort feeding' behaviors than men, and stress-related eating may vary across the menstrual cycle. This suggests that LSI effects may be sex- and estrous cycle-dependent. The present study therefore investigated the effects of LSI on HPA axis stress responsivity, as well as markers of neuronal activation/plasticity in stress- and reward-related neurocircuitry in female rats across the estrous cycle. We found that LSI reduced post-restraint stress plasma ACTH in female rats specifically during proestrus/estrus (P/E). LSI also increased basal (non-stress) FosB/deltaFosB- and pCREB-immunolabeling in the basolateral amygdala (BLA) and central amygdala specifically during P/E. Finally, Bayesian network modeling of the FosB/deltaFosB and pCREB expression data identified a neurocircuit that includes the BLA, nucleus accumbens, prefrontal cortex, and bed nucleus of the stria terminalis as likely being modified by LSI during P/E. When considered in the context of our prior results, the present findings suggest that palatable food reduces stress responses in female rats similar to males, but in an estrous cycle-dependent manner. Further, the BLA may contribute to the LSI effects in both sexes, whereas the involvement of other brain regions appears to be sex-dependent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071329PMC
http://dx.doi.org/10.1016/j.neuroscience.2018.05.030DOI Listing

Publication Analysis

Top Keywords

female rats
16
hpa axis
12
palatable food
8
brain regions
8
lsi effects
8
estrous cycle-dependent
8
lsi
7
rats
5
stress
5
food hpa
4

Similar Publications

Objectives: Both intrinsic and extrinsic factors cause skin aging. Intrinsic aging is characterized by decreased collagen density, particularly collagen types I (COL1A1) and III (COL3A1), and an increase in the COL1/COL3 ratio. Extrinsic aging, primarily due to ultraviolet light exposure, leads to photoaging, which causes collagen fragmentation and reduced production, leading to skin sagging.

View Article and Find Full Text PDF

Bridging animal models and humans: neuroimaging as intermediate phenotypes linking genetic or stress factors to anhedonia.

BMC Med

January 2025

Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China.

Background: Intermediate phenotypes, such as characteristic neuroimaging patterns, offer unique insights into the genetic and stress-related underpinnings of neuropsychiatric disorders like depression. This study aimed to identify neuroimaging intermediate phenotypes associated with depression, bridging etiological factors to behavioral manifestations and connecting insights from animal models to diverse clinical populations.

Methods: We analyzed datasets from both rodents and humans.

View Article and Find Full Text PDF

Recent research has identified sex-dependent links between risk taking behaviors, approach-avoidance bias and alcohol intake. However, preclinical studies have typically assessed alcohol drinking using a singular dimension of intake (i.e.

View Article and Find Full Text PDF

The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption.

View Article and Find Full Text PDF

For individuals at high risk of developing breast cancer, interventions to mitigate this risk include surgical removal of their breasts and ovaries or five years treatment with the anti-estrogen tamoxifen or aromatase inhibitors. We hypothesized that a silicone based anti-estrogen-eluting implant placed within the breast would provide the risk reduction benefit of hormonal therapy, but without the adverse effects that limit compliance. To this end, we demonstrate that when placed adjacent to mammary tissue in the 7,12-dimethylbenz[a]anthracene-induced rat breast cancer model a fulvestrant-eluting implant delays breast cancer with minimal systemic exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!