Hepatic ischemia and reperfusion (I/R) injury is a major cause of liver damage during liver transplantation, resection surgery, shock, and trauma. It has been reported that TXNIP expression was upregulated in a rat model of hepatic I/R injury. However, the role of TXNIP in the hepatic I/R injury is little known. In our study, we investigated the biological role of TXNIP and its potential molecular mechanism in the human hepatic cell line (HL7702 cells). Using oxygen-glucose deprivation and reoxygenation (OGD/R) to create a cell model of hepatic I/R injury, we found that the mRNA and protein expression levels of TXNIP were upregulated in HL7702 cells exposed to OGD/R. TXNIP overexpression remarkably promoted OGD/R-induced cell apoptosis and lactate dehydrogenase (LDH) release, both of which were significantly decreased by TXNIP knockdown. The production of malondialdehyde (MDA) was also increased by TXNIP overexpression, but was reduced by TXNIP knockdown. Moreover, TXNIP overexpression significantly upregulated the phosphorylation of p38 and JNK, which was remarkably inhibited by TXNIP knockdown. Additionally, p38-specific inhibitor SB203580 abrogated the effect of TXNIP overexpression on OGD/R-induced cell injury. Taken together, these results indicated that TXNIP knockdown alleviated hepatocyte I/R injury through preventing p38/JNK pathway activation. Thus, TXNIP might offer a novel potential therapeutic target for the treatment of hepatic I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.05.185DOI Listing

Publication Analysis

Top Keywords

i/r injury
24
txnip knockdown
20
hepatic i/r
16
txnip overexpression
16
txnip
14
ischemia reperfusion
8
injury
8
injury preventing
8
preventing p38/jnk
8
p38/jnk pathway
8

Similar Publications

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).

Chin J Nat Med

January 2025

Department of Pharmacy, The Fourth College of Clinical Medicine, Xinjiang Medical University, Urumqi 830000, China; Department of Pharmacy, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi 830000, China. Electronic address:

Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD.

View Article and Find Full Text PDF

Ginkgolide B binds to GPX4 and FSP1 to alleviate cerebral ischemia/reperfusion injury in rats.

Toxicol Appl Pharmacol

January 2025

Department of Neurology, Yantaishan Hospital, Yantai, Shandong, China. Electronic address:

Ischemia/reperfusion (I/R) injury can increase the anomalous permeability of the blood-brain barrier and the risk of hemorrhagic conversion. Ginkgolide B (Gin B) has been recognized for its neuroprotective properties in stroke treatment. This study aimed to analyze the association of Gin B with GPX4 and FSP1 in cerebral I/R injury treatment.

View Article and Find Full Text PDF

eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.

Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with HO (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!