Restoration of access to lost habitat for threatened and endangered fishes above currently impassable dams represents a major undertaking. Biological monitoring is critical to understand the dynamics and success of anadromous recolonization as, in the case of Oncorhynchus mykiss, anadromous steelhead populations are reconnected with their conspecific resident rainbow trout counterparts. We evaluate three river systems in the Lower Columbia River basin: the White Salmon, Sandy, and Lewis rivers that are in the process of removing and/or providing passage around existing human-made barriers in O. mykiss riverine habitat. In these instances, now isolated resident rainbow trout populations will be exposed to competition and/or genetic introgression with steelhead and vice versa. Our genetic analyses of 2,158 fish using 13 DNA microsatellite (mSAT) loci indicated that within each basin anadromous O. mykiss were genetically distinct from and significantly more diverse than their resident above-dam trout counterparts. Above long-standing natural impassable barriers, each of these watersheds also harbors unique rainbow trout gene pools with reduced levels of genetic diversity. Despite frequent releases of non-native steelhead and rainbow trout in each river, hatchery releases do not appear to have had a significant genetic effect on the population structure of O. mykiss in any of these watersheds. Simulation results suggest there is a high likelihood of identifying anadromous x resident individuals in the Lewis and White Salmon rivers, and slightly less so in the Sandy River. These genetic data are a prerequisite for informed monitoring, managing, and conserving the different life history forms during upstream recolonization when sympatry of life history forms of O. mykiss is restored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979028PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197571PLOS

Publication Analysis

Top Keywords

rainbow trout
16
oncorhynchus mykiss
8
columbia river
8
river systems
8
resident rainbow
8
trout counterparts
8
white salmon
8
life history
8
history forms
8
genetic
6

Similar Publications

Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).

View Article and Find Full Text PDF

Given the need to reduce animal testing for environmental risk assessment, we aim to develop a fish invitrome, an alternative fish modular framework capable of predicting chemical toxicity in fish without the use of animals. The central module of the framework is the validated RTgill-W1 cell line assay that predicts fish acute toxicity of chemicals (Organization for Economic Cooperation and Development Test Guideline (OECD TG) 249). Expanding towards prediction of chronic toxicity, the fish invitrome includes two other well-advanced modules for chemical bioaccumulation/biotransformation and inhibition of fish growth.

View Article and Find Full Text PDF

Human activities and climate change have significantly increased humic substances in freshwater ecosystems over the last few decades. This increase is particularly concerning during seasonal changes or after heavy rainfall, when concentrations can easily increase up to tenfold. This phenomenon, known as "browning," has unknown consequences for aquatic organisms.

View Article and Find Full Text PDF

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.

View Article and Find Full Text PDF

Vibriosis caused by Vibrio anguillarum has been an important bacterial disease in cultured rainbow trout (Oncorhynchus mykiss). In the present study, we evaluated the protective efficacy of a vaccine that consists of formalin-killed (FK) V. anguillarum and the alr genes knockout auxotrophic-live (AL) V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!