A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermoelectric Properties of Doped-CuSbSe Compounds: A First-Principles Insight. | LitMetric

This work reports the first systematic study of the effects of substitutional doping on the transport properties and electronic structure of CuSbSe. To this end, the electronic structures and thermoelectric parameters of CuSbSe and CuSbM Se (M = Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Bi) were systematically investigated by using density functional theory and the Boltzmann semiclassical transport theory. Substitutional doping at Sb site with IIIA (M = Al, Ga, In, Tl) and IVA (M = Si, Ge, Sn, Pb) elements considerably increases the hole carrier concentration and consequently the electrical conductivity, while doping with M = Bi would be adequate to provide high S values. Changes in calculated thermoelectric parameters are explained based on the effects of the dopant element on the electronic band structure near the Fermi level. We also present an extensive comparison between thermoelectric parameters here calculated and available experimental data. Our results allow us to infer significant insights into the search for new materials with improved thermoelectric performance by modifying the electronic structure through substitutional doping.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b00980DOI Listing

Publication Analysis

Top Keywords

substitutional doping
12
thermoelectric parameters
12
electronic structure
8
thermoelectric
5
thermoelectric properties
4
properties doped-cusbse
4
doped-cusbse compounds
4
compounds first-principles
4
first-principles insight
4
insight work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!