Composite material (AC-ZnO) was prepared by growing ZnO nanoparticles during the production of biomass based-activated carbon (AC) via the incorporation of zinc acetate in the process. Comprehensive analyses confirmed the presence of ZnO nanoparticles over the AC surface and described the particular nature of the composite adsorbent. Methylene blue (MB) equilibrium data fitted the Dubinin-Radushkevich model. The MB adsorption capacity was higher for the bare activated carbons (197.9-188.7 mg/g) than the activated carbons with ZnO nanoparticles (137.6-149.7 mg/g). The adsorption of the MB on the adsorbents is physical because the mean adsorption energy (E) is between 1.76 and 2.00 kJ/mol. Experiments that combine adsorption and photocatalysis were carried out with different loads of adsorbents and with and without UV-light exposure. Photocatalytic activity was identified mostly at the first stage of the adsorption process and, in the case of experiments with less load of the composite AC-ZnO, because the light obstruction effect of the activated carbon is more for higher loads. The ZnO grown over AC improves the adsorption of cations such as Pb, Al and Fe in aqueous phase (polluted river water) and provides antibacterial capacity against Escherichia coli and Salmonella typhimurium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2018.176 | DOI Listing |
Int J Biol Macromol
December 2024
Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No. 11757 Cairo, Egypt.
Daru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
Nanomaterials (Basel)
December 2024
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.
In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Industrial and Information Engineering and Economics, University of L'Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L'Aquila, AQ, Italy.
The aim of the present paper is to propose an innovative, one-step and sustainable process allowing us to obtain almost 10 kg/week of pure and crystalline simonkolleite nanoparticles (SK NPs) in only 8 min of reaction, working in water, under ambient conditions of pressure/temperature, guaranteeing at the same time low environmental impact and a high yield of NP production. In addition, the obtained NPs can also act as ZnO precursors at ambient temperature, and this result supports the sustainability of the process considering that, generally, the production of ZnO from SK occurred via annealing at high temperatures. The SK NPs appeared pure and crystalline, characterized by a highly uniform hexagonal lamellar feature.
View Article and Find Full Text PDFMar Drugs
December 2024
Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!