Two trials were conducted to assess the effects of tributyrin (TB) supplementation on ruminal microbial protein yield and fermentation characteristics in adult sheep. In an in vitro trial, substrate was made to offer TB at 0, 2, 4, 6, and 8 g/kg on a dry matter (DM) basis and incubated for 48 hr. In an in vivo trial, 45 adult ewes were randomly assigned by initial body weight (55 ± 5 kg) to five treatments of nine animals over an 18-day period. Total mixed ration was made to offer TB to ewes at 0, 2, 4, 6, and 8 g/kg on a DM basis. The in vitro trial showed that TB enhanced apparent degradation of DM (p = .009), crude protein (p < .001), neutral detergent fiber (p = .007) and acid detergent fiber (p = .010) and increased methanogenesis (p < .001), respectively. The in vivo trial showed that TB decreased DM intake (p < .001) and enhanced rumen microbial N synthesis (p < .001), respectively. Both in vitro and in vivo trials showed that TB increased total volatile fatty acid concentration and enhanced fibrolytic enzyme activity. The results indicated that TB might exert positive effects on microbial protein yield and fermentation in the rumen.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.13033DOI Listing

Publication Analysis

Top Keywords

effects tributyrin
8
tributyrin supplementation
8
supplementation ruminal
8
ruminal microbial
8
microbial protein
8
protein yield
8
yield fermentation
8
fermentation characteristics
8
in vitro trial
8
characteristics nutrients
4

Similar Publications

Tributyrin (TB) can be hydrolyzed into short chain fatty acids (butyric acid) in the gastrointestinal tract, which are claimed to exhibit beneficial health effects in the colon. However, digestion of tributyrin in the stomach and small intestine may promote its absorption in the upper gastrointestinal tract, thereby reducing its potential colonic health benefits. In this study, we therefore developed a novel method of encapsulating emulsified tributyrin within biopolymer-based hydrogel beads (≈ 800 μm) that were then encapsulated inside the boba beads (≈ 8-10 mm) found in bubble tea.

View Article and Find Full Text PDF

Dietary Tributyrin Improves Growth Performance, Meat Quality, Muscle Oxidative Status, and Gut Microbiota in Taihe Silky Fowls under Cyclic Heat Stress.

Animals (Basel)

October 2024

Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.

Heat stress adversely affects poultry production and meat quality, leading to economic losses. This study aimed to investigate the effects of adding tributyrin on growth performance, meat quality, muscle oxidative status, and gut microbiota of Taihe silky fowls under cyclic heat stress (CHS) conditions. In this study, 120-day-old Taihe silky fowls (male) were randomly divided into six dietary treatments.

View Article and Find Full Text PDF

Butyrate can strengthen the intestinal epithelial barrier. However, the mechanisms by which butyrate affects intestinal epithelial cells (IECs) pyroptosis in Crohn's disease (CD) remain unclear. In this study, we collected colonic biopsy samples from CD patients and healthy controls to assess pyroptosis levels.

View Article and Find Full Text PDF

Effect of butyrate sources in a high-concentrate diet on rumen structure and function in growing rams.

Animal

September 2024

Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland. Electronic address:

Dietary butyrate is considered to have mostly positive impacts on the ruminal epithelium. However, its supplementation in a high-concentrate diet may not be justified as excessive ruminal butyrate may negatively affect the rumen. Furthermore, butyrate impact on the rumen may depend on its source.

View Article and Find Full Text PDF

Introduction: The current obesity crisis has resulted in many people with excess adipose tissue suffering from chronic inflammation. This inflammation is largely due to the release of cytokines and chemokines from visceral fat. The aim of this study was to identify potential anti-inflammatory agents that might alleviate obesity-induced chronic inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!