There is a critical need for preventing peri-implantitis as its prevalence has increased and dental implants lack features to prevent it. Research strategies to prevent peri-implantitis have focused on modifying dental implants to incorporate different antimicrobial agents. An alternative strategy consists of barring the expansion of the biofilm subgingivally by forming a long-lasting permucosal seal between the soft tissue and the implant surface. Here, we innovatively biofunctionalized titanium with bioinspired peptide coatings to strengthen biological interactions between epithelial cells and the titanium surface. We selected laminin 332- and ameloblastin-derived peptides (Lam, Ambn). Laminin 332 participates in the formation of hemidesmosomes by keratinocytes and promotes epithelial attachment around teeth; and ameloblastin, an enamel derived protein, is involved in tissue regeneration events following disruption of the periodontium. Lam, Ambn or combinations of both peptides were covalently immobilized on titanium discs. Successful immobilization of the peptides was confirmed by contact angle goniometry, X-ray photoelectron spectroscopy and fluorescent labelling of the peptides. Additionally, we confirmed the mechanical and thermochemical stability of the peptides on Ti substrates. Proliferation and hemidesmosome formation of human keratinocytes (TERT-2/OKF-6) were assessed by immunofluorescence labelling. The peptide-coated surfaces increased cell proliferation for up to 48 h in culture compared to control surfaces. Most importantly, formation of hemidesmosomes by keratinocytes was significantly increased on surfaces coated with Ambn + Lam peptides compared to control (p < 0.01) and monopeptide coatings (p < 0.005). Together, these results support the Ambn + Lam multipeptide coating as a promising candidate for inducing a permucosal seal around dental implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019193 | PMC |
http://dx.doi.org/10.1039/c8bm00300a | DOI Listing |
Sci Rep
January 2025
Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
This study aims to evaluate and compare the usability and performance of mixed reality (MR) technology versus conventional methods for preoperative planning of patient-specific reconstruction plates for orbital fractures. A crossover study design was used to compare MR technology with conventional three-dimensional (3D) printing approaches in the planning of maxillofacial traumatology treatments. The primary focus was on user-friendliness and the accuracy of patient-specific reconstruction planning.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun 130033, China. Electronic address:
This study explored a novel modification method for porous polyetheretherketone (PEEK) implants using a biomimetic coating to achieve synergistic enhancement of vascularization and bone regeneration. Inspired by the natural extracellular matrix (ECM) structure (consists of growth factors and matrix proteins), a biomimetic dual-factor coating capable of releasing bone morphogenetic protein-2 (BMP-2) and fibronectin (FN) was coated on the surface of 3D-printed porous PEEK scaffolds using polydopamine (PDA) as a binder. Experiments conducted with MC3T3-E1 cells or HUVECs in co-culture with scaffolds revealed that the biomimetic coating not only synergically promoted cell migration, adhesion and proliferation, but also enhanced angiogenesis and osteogenic differentiation simultaneously in vivo.
View Article and Find Full Text PDFJ Stomatol Oral Maxillofac Surg
January 2025
School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Oral & Maxillofacial Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea. Electronic address:
Objective: Guided implant surgery using three-dimensional (3-D) planning software and 3-D printed surgical guides has become a critical tool for enhancing accuracy. This study aims to determine the minimum guide hole height necessary to maintain implant placement accuracy.
Materials And Methods: Ten maxillary models with edentulous areas were created using CT and optical scan data.
J Mater Sci Mater Med
January 2025
Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.
Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.
View Article and Find Full Text PDFJ Periodontol
January 2025
Department of Biomedical and Neuromotor Sciences, School of Dentistry - Division of Periodontology and Implantology, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
Background: Crown cementation is a common technique for implant-supported prosthodontics. However, for possible slipping of the cement below the mucosal margin, its thorough removal poses some issues. The objective of this study was to evaluate the presence of submucosal cement residues in patients with peri-implant disease by endoscopic visualization and to investigate the potential correlation between the pathological scenario and the spatial position of cement residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!