Chemical clocks, oscillations, and other temporal effects in analytical chemistry: oddity or viable approach?

Analyst

Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 30010, Taiwan.

Published: July 2018

AI Article Synopsis

  • Most analytical methods typically use sensors to measure signals from light or electrical changes to determine concentrations of substances.
  • This minireview discusses a unique analytical strategy that focuses on measuring the time intervals between two observable states in a reaction, which can indicate changes like color or luminescence.
  • While some assays based on this time measurement approach show promise and have been developed recently, they are still in the early stages of validation for practical applications in chemical analysis.

Article Abstract

Most analytical methods are based on "analogue" inputs from sensors of light, electric potentials, or currents. The signals obtained by such sensors are processed using certain calibration functions to determine concentrations of the target analytes. The signal readouts are normally done after an optimised and fixed time period, during which an assay mixture is incubated. This minireview covers another-and somewhat unusual-analytical strategy, which relies on the measurement of time interval between the occurrences of two distinguishable states in the assay reaction. These states manifest themselves via abrupt changes in the properties of the assay mixture (e.g. change of colour, appearance or disappearance of luminescence, change in pH, variations in optical activity or mechanical properties). In some cases, a correlation between the time of appearance/disappearance of a given property and the analyte concentration can be also observed. An example of an assay based on time measurement is an oscillating reaction, in which the period of oscillations is linked to the concentration of the target analyte. A number of chemo-chronometric assays, relying on the existing (bio)transformations or artificially designed reactions, were disclosed in the past few years. They are very attractive from the fundamental point of view but-so far-only few of them have be validated and used to address real-world problems. Then, can chemo-chronometric assays become a practical tool for chemical analysis? Is there a need for further development of such assays? We are aiming to answer these questions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7an01926bDOI Listing

Publication Analysis

Top Keywords

assay mixture
8
chemo-chronometric assays
8
chemical clocks
4
clocks oscillations
4
oscillations temporal
4
temporal effects
4
effects analytical
4
analytical chemistry
4
chemistry oddity
4
oddity viable
4

Similar Publications

Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.

View Article and Find Full Text PDF

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.

View Article and Find Full Text PDF

Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.

View Article and Find Full Text PDF

Unlabelled: Metatranscriptome (MetaT) sequencing is a critical tool for profiling the dynamic metabolic functions of microbiomes. In addition to taxonomic information, MetaT also provides real-time gene expression data of both host and microbial populations, thus permitting authentic quantification of the functional (enzymatic) output of the microbiome and its host. The main challenge to effective and accurate MetaT analysis is the removal of highly abundant rRNA transcripts from these complex mixtures of microbes, which can number in the thousands of individual species.

View Article and Find Full Text PDF

Changes in flavor profile of sauce-flavor baijiu: Perceptual interactions between 1-propanol and aroma compounds.

Food Chem X

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China.

1-Propanol is an important aroma compound in sauce-flavor Baijiu. However, the mechanism by which it affects the aroma of sauce-flavor Baijiu has not been fully investigated. In this study, an instrumental and perceptual analysis was employed to assess the impact of 1-propanol on the flavor and volatile compounds in sauce-flavor Baijiu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!