Interpretation of radiolucent foreign bodies (FBs) is a common task charged to pediatric radiologists. The use of a motion compensated technique to decrease breathing motion on images would greatly decrease overall exposure to ionizing radiation and increase access to treatment yielding a great impact on clinical care. This study reports on the methodology and materials used to construct an in-house anthropomorphic phantom for investigating image quality in digital tomosynthesis protocols for volumetric imaging of the pediatric airway. Availability and cost of possible substitute materials were considered and simplifying assumptions were made. Two different modular phantoms were assembled in coronal slab layers using materials designed to approximate a one- and three-year-old thorax at diagnostic photon energies for use with digital tomosynthesis protocols such as those offered on GE's VolumeRAD application. Exposures were made using both phantoms with inserted food particles inside an oscillating airway. The goal of the phantom is to help evaluate (1) whether the currently used protocol is sufficient to image the airway despite breathing motion and (2) whether it is not, to find the optimal protocol by testing various commercially available protocols using this phantom. The affordable construction of the pediatric sized phantom aimed at optimizing GE's VolumeRAD protocol for airway foreign body imaging is demonstrated in this study which can be used to test VolumeRAD's ability to image the airways with and without a low-density foreign body within the airways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932438 | PMC |
http://dx.doi.org/10.1155/2018/3835810 | DOI Listing |
Br J Radiol
December 2024
Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy.
Neoadjuvant Therapy (NT) has become the gold standard for treating locally advanced Breast Cancer (BC). The assessment of pathological response (pR) post-NT plays a crucial role in predicting long-term survival, with Contrast-Enhanced Magnetic Resonance Imaging (MRI) currently recognised as the preferred imaging modality for its evaluation. Traditional imaging techniques, such as Digital Mammography (DM) and Ultrasonography (US), encounter difficulties in post-NT assessments due to breast density, lesion changes, fibrosis, and molecular patterns.
View Article and Find Full Text PDFEur Radiol
December 2024
Radiology Diagnostics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.
Objectives: Limited understanding exists regarding non-detected cancers in digital breast tomosynthesis (DBT) screening. This study aims to classify non-detected cancers into true or false negatives, compare them with true positives, and analyze reasons for non-detection.
Materials And Methods: Conducted between 2010 and 2015, the prospective single-center Malmö Breast Tomosynthesis Screening Trial (MBTST) compared one-view DBT and two-view digital mammography (DM).
J Med Imaging (Bellingham)
January 2025
Siemens Healthineers AG, Forchheim, Germany.
Purpose: Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast.
View Article and Find Full Text PDFIndian J Radiol Imaging
January 2025
Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India.
Synthesized mammography (SM) refers to two-dimensional (2D) images derived from the digital breast tomosynthesis (DBT) data. It can reduce the radiation dose and scan duration when compared with conventional full-field digital mammography (FFDM) plus tomosynthesis. To compare the diagnostic performance of 2D FFDM with synthetic mammograms obtained from DBT in a diagnostic population.
View Article and Find Full Text PDFMed Phys
December 2024
U.S. Food and Drug Administration, Silver Spring, Maryland, USA.
Background: In silico clinical trials are becoming more sophisticated and allow for realistic assessment and comparisons of medical image system models. These fully computational models enable fast and affordable trial designs that can closely capture trends seen on real clinical trials.
Purpose: To evaluate three breast imaging system models for digital mammography (DM) and digital breast tomosynthesis (DBT) in a fully-in-silico longitudinal study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!