The influence of cell membrane fluidity on cancer progression has been established in different solid tumors. We previously reported that "cancer-associated fibroblasts" (CAFs) induced epithelial-mesenchymal transition and increased cell membrane fluidity and migration in poorly (MCF-7) and highly invasive (MDA-MB-231) breast cancer cells. We also found that the membrane fluidity regulating enzyme stearoyl-CoA desaturase 1 (SCD1) was upregulated in tumor cells co-cultured with CAFs and established its essential role for both intrinsic and CAF-driven tumor cell motility. Here, we further explored the mechanisms involved in the SCD1-based modulation of breast cancer cell migration and investigated the role of the other human SCD isoform, SCD5. We showed that the addition of oleic acid, the main SCD1 product, nullified the inhibitory effects produced on MCF-7 and MDA-MB-231 cell migration by SCD1 depletion (pharmacological or siRNA-based). Conversely, SCD5 seemed not involved in the regulation of cancer cell motility. Interestingly, a clear induction of necrosis was observed as a result of the depletion of SCD5 in MCF-7 cells, where the expression of SCD5 was found to be upregulated by CAFs. The necrotic effect was rescued by a 48-h treatment of cells with oleic acid. These results provide further insights in understanding the role of SCD1 in both intrinsic and CAF-stimulated mammary tumor cell migration, unveiling the metabolic basis of this desaturase-triggered effect. Moreover, our data suggest the ability of CAFs to promote the maintenance of tumor cell survival by the induction of SCD5 levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966257PMC
http://dx.doi.org/10.18632/oncotarget.25273DOI Listing

Publication Analysis

Top Keywords

cell migration
16
breast cancer
12
membrane fluidity
12
tumor cell
12
cell
9
role human
8
cancer progression
8
cell membrane
8
cell motility
8
cancer cell
8

Similar Publications

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Molecular and functional convergences associated with complex multicellularity in Eukarya.

Mol Biol Evol

January 2025

Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.

A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.

View Article and Find Full Text PDF

Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.

View Article and Find Full Text PDF

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!