Increased expression of Golgi phosphoprotein 3 (GOLPH3) has been reported to be associated with several types of human cancer. Patient-derived cancer xenograft models have demonstrated great potential in preclinical studies. In the present study, the link between GOLPH3 expression and survival was examined in patients with non-small cell lung cancer (NSCLC). Patient-derived lung cancer xenograft models were established with two different methods. Lastly, the association between GOLPH3 expression and establishment of the xenograft models was explored. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry analysis were used to examine GOLPH3 expression in 60 NSCLC tissues and matched adjacent non-cancerous tissues (ANT). In addition, tumor pieces from the 60 NSCLC tissues were implanted in the subcutaneous layer and in the subrenal kidney capsule of nude mice. RT-qPCR, histopathology and immunohistochemistry were used to confirm the human origin of the xenograft tumors. RT-qPCR was also used to research the mutation status of GOLPH3 in the xenograft tumors. The results demonstrated that NSCLC tissues had higher expression of GOLPH3, at the mRNA and protein level, compared with ANT. High expression of GOLPH3 correlated with poor survival in patients with NSCLC. Successful engraftment was established for 27 tissues in the subrenal kidney capsule and for 16 in the subcutaneous layer of nude mice. The subrenal kidney capsule group demonstrated significantly higher engraftment rates than the subcutaneous layer group. In addition, higher GOLPH3 expression in the tumor tissues was significantly correlated with higher engraftment rates in mice. In both groups, few xenografts lost the GOLPH3 mutation. In summary, GOLPH3 may be an important diagnosis and prognosis indicator in patients with NSCLC. The genotype and phenotype of the xenograft tumors derived from patient lung cancer tissues exhibited significant similarities to the originating primary tumors. High GOLPH3 expression may promote the successful establishment of xenograft models for NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962867PMC
http://dx.doi.org/10.3892/ol.2018.8340DOI Listing

Publication Analysis

Top Keywords

golph3 expression
20
lung cancer
16
xenograft models
16
expression golph3
12
nsclc tissues
12
subcutaneous layer
12
subrenal kidney
12
kidney capsule
12
xenograft tumors
12
golph3
11

Similar Publications

Involvement of GTPases and vesicle adapter proteins in Heparan sulfate biosynthesis: role of Rab1A, Rab2A and GOLPH3.

FEBS J

January 2025

Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.

Vesicle trafficking is pivotal in heparan sulfate (HS) biosynthesis, influencing its spatial and temporal regulation within distinct Golgi compartments. This regulation modulates the sulfation pattern of HS, which is crucial for governing various biological processes. Here, we investigate the effects of silencing Rab1A and Rab2A expression on the localisation of 3-O-sulfotransferase-5 (3OST5) within Golgi compartments and subsequent alterations in HS structure and levels.

View Article and Find Full Text PDF

With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study.

View Article and Find Full Text PDF

Cisplatin resistance is common in non‑small cell lung cancer (NSCLC); however, the molecular mechanisms remain unclear. The present study aimed to identify a new function of Golgi phosphoprotein 3 (GOLPH3) in NSCLC‑associated cisplatin resistance. Using A549 human NSCLC cells and the cisplatin‑resistant variant, stable cell lines with GOLPH3 knockdown or overexpression were established using lentiviral vectors.

View Article and Find Full Text PDF

Specific sialylation of N-glycans and its novel regulatory mechanism.

Glycoconj J

June 2024

Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.

Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival.

View Article and Find Full Text PDF

GOLPH3 knockdown alleviates the inflammation and apoptosis in lipopolysaccharide-induced acute lung injury by inhibiting Golgi stress mediated autophagy.

Prostaglandins Other Lipid Mediat

October 2024

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College,Hangzhou, Zhejiang 314408, China. Electronic address:

Pneumonia, an acute inflammatory lesion of the lung, is the leading cause of death in children aged < 5 years. We aimed to study the function and mechanism of Golgi phosphoprotein 3 (GOLPH3) in infantile pneumonia. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and injury of MLE-12 cells were used as the pneumonia model in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!