Spirochaetes are frequently detected in anoxic hydrocarbon- and organohalide-polluted groundwater, but their role in such ecosystems has remained unclear. To address this, we studied a sulfate-reducing, naphthalene-degrading enrichment culture, mainly comprising the sulfate reducer Desulfobacterium N47 and the rod-shaped Spirochete Rectinema cohabitans HM. Genome sequencing and proteome analysis suggested that the Spirochete is an obligate fermenter that catabolizes proteins and carbohydrates, resulting in acetate, ethanol, and molecular hydrogen (H) production. Physiological experiments inferred that hydrogen is an important link between the two bacteria in the enrichment culture, with H derived from fermentation by R. cohabitans used as reductant for sulfate reduction by Desulfobacterium N47. Differential proteomics and physiological experiments showed that R. cohabitans utilizes biomass (proteins and carbohydrates) released from dead cells of Desulfobacterium N47. Further comparative and community genome analyses indicated that other Rectinema phylotypes are widespread in contaminated environments and may perform a hydrogenogenic fermentative lifestyle similar to R. cohabitans. Together, these findings indicate that environmental Spirochaetes scavenge detrital biomass and in turn drive necromass recycling at anoxic hydrocarbon-contaminated sites and potentially other habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052044 | PMC |
http://dx.doi.org/10.1038/s41396-018-0148-3 | DOI Listing |
ISME J
August 2018
University of Duisburg-Essen, Biofilm Centre, Universitätsstrasse 5, 45141, Essen, Germany.
Spirochaetes are frequently detected in anoxic hydrocarbon- and organohalide-polluted groundwater, but their role in such ecosystems has remained unclear. To address this, we studied a sulfate-reducing, naphthalene-degrading enrichment culture, mainly comprising the sulfate reducer Desulfobacterium N47 and the rod-shaped Spirochete Rectinema cohabitans HM. Genome sequencing and proteome analysis suggested that the Spirochete is an obligate fermenter that catabolizes proteins and carbohydrates, resulting in acetate, ethanol, and molecular hydrogen (H) production.
View Article and Find Full Text PDFEnviron Microbiol
July 2017
Biofilm Centre, University of Duisburg-Essen, Essen, Germany.
The cyclohexane derivative cis-2-(carboxymethyl)cyclohexane-1-carboxylic acid [(1R,2R)-/(1S,2S)-2-(carboxymethyl)cyclohexane-1-carboxylic acid] has previously been identified as metabolite in the pathway of anaerobic degradation of naphthalene by sulfate-reducing bacteria. We tested the corresponding CoA esters of isomers and analogues of this compound for conversion in cell free extracts of the anaerobic naphthalene degraders Desulfobacterium strain N47 and Deltaproteobacterium strain NaphS2. Conversion was only observed for the cis-isomer, verifying that this is a true intermediate and not a dead-end product.
View Article and Find Full Text PDFFEMS Microbiol Ecol
March 2015
UFZ - Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstraße 15, D-04318 Leipzig, Germany
Polycyclic aromatic hydrocarbons (PAH) are widespread and persistent environmental contaminants, especially in oxygen-free environments. The occurrence of anaerobic PAH-degrading bacteria and their underlying metabolic pathways are rarely known. In this study, PAH degraders were enriched in laboratory microcosms under sulfate-reducing conditions using groundwater and sediment samples from four PAH-contaminated aquifers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!