The axial coupling of the nucleon, g, is the strength of its coupling to the weak axial current of the standard model of particle physics, in much the same way as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates the rate at which neutrons decay to protons, the strength of the attractive long-range force between nucleons and other features of nuclear physics. Precision tests of the standard model in nuclear environments require a quantitative understanding of nuclear physics that is rooted in quantum chromodynamics, a pillar of the standard model. The importance of g makes it a benchmark quantity to determine theoretically-a difficult task because quantum chromodynamics is non-perturbative, precluding known analytical methods. Lattice quantum chromodynamics provides a rigorous, non-perturbative definition of quantum chromodynamics that can be implemented numerically. It has been estimated that a precision of two per cent would be possible by 2020 if two challenges are overcome: contamination of g from excited states must be controlled in the calculations and statistical precision must be improved markedly. Here we use an unconventional method inspired by the Feynman-Hellmann theorem that overcomes these challenges. We calculate a g value of 1.271 ± 0.013, which has a precision of about one per cent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-018-0161-8 | DOI Listing |
Nat Commun
January 2025
The beta decay of the lightest charmed baryon provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay , utilizing 4.5 fb of electron-positron annihilation data collected with the BESIII detector.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Weizmann Institute of Science, Rehovot 7610001, Israel.
We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
The Institute of Mathematical Sciences, Taramani, 600113 Chennai, India.
Phys Rev Lett
November 2024
Berkeley Center for Theoretical Physics, University of California, Berkeley, California 94720, USA and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
It has long been established that axions could have been produced within the nascent proto-neutron star formed following the type II supernova SN1987A, escaped the star due to their weak interactions, and then converted to gamma rays in the Galactic magnetic fields; the nonobservation of a gamma-ray flash coincident with the neutrino burst leads to strong constraints on the axion-photon coupling for axion masses m_{a}≲10^{-10} eV. In this Letter, we use SN1987A to constrain higher mass axions, all the way to m_{a}∼10^{-3} eV, by accounting for axion production from the Primakoff process, nucleon bremsstrahlung, and pion conversion along with axion-photon conversion on the still-intact magnetic fields of the progenitor star. Moreover, we show that gamma-ray observations of the next Galactic supernova, leveraging the magnetic fields of the progenitor star, could detect quantum chromodynamics axions for masses above roughly 50 μeV, depending on the supernova.
View Article and Find Full Text PDFEur Phys J C Part Fields
November 2024
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Unlabelled: Matching conditions are universal ingredients that describe how fragmentation functions change when heavy-flavour thresholds are crossed during the factorisation scale evolution. They are the last missing piece for a consistent description of observables with identified final-state hadrons at next-to-next-to leading order accuracy in quantum chromodynamics. We present an analytical form of the matching condition for light-flavour to hadron fragmentation function at next-to-next-to leading order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!