The objective of this study was to determine the effect of plant based antimicrobial solutions specifically tea tree and Manuka oil on facial silicone elastomers. The purpose of this in vitro study was to evaluate the effect of disinfection with plant extract solution on mechanical properties and morphology on the silicone elastomer. Test specimens were subjected to disinfection using tea tree oil, Manuka oil and the bacteria. Furthermore, a procedure duration was used in the disinfection process to simulate up to one year of usage. Over 500 test specimens were fabricated for all tests performed namely hardness, elongation, tensile, tear strength tests, visual inspection and lastly surface characterization using SEM. A repeated measures ANOVA revealed that hardness and elongation at break varied significantly over the time period, whereas this was not observed in the tear and tensile strength parameters of the test samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025512PMC
http://dx.doi.org/10.3390/ma11060925DOI Listing

Publication Analysis

Top Keywords

plant based
8
based antimicrobial
8
antimicrobial solutions
8
silicone elastomer
8
tea tree
8
manuka oil
8
test specimens
8
hardness elongation
8
mechanical morphological
4
morphological plant
4

Similar Publications

Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.

View Article and Find Full Text PDF

Hyperspectral image classification in remote sensing often encounters challenges due to limited annotated data. Semi-supervised learning methods present a promising solution. However, their performance is heavily influenced by the quality of pseudo labels.

View Article and Find Full Text PDF

is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.

View Article and Find Full Text PDF

Assembly and comparative analysis of the complete mitogenome of var. , an exceptional berry plant possessing sweet leaves.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China.

var. is a special berry plant of in the Rosaceae family. Its leaves contain high-sweetness, low-calorie, and non-toxic sweet ingredients, known as rubusoside.

View Article and Find Full Text PDF

Scientometric approach to the scientific trends in articles on seagrass in the Atlantic Coast published between 1969-2024.

Front Plant Sci

December 2024

Laboratório de Ecologia de Sedimentos, Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil.

Submerged or partially floating seagrasses in marine or brackish waters form productive seagrass beds, feeding grounds for a rich and varied associated biota, play key ecological roles in mitigating climate change and provide ecosystem services for humanity. The objective of this study was to perform a temporal quali- and quantitative analysis on the scientific production on seagrasses in the Atlantic Ocean during last 64 years (1960 to 2024) through defined workflow by scientometric analysis on Scopus database. Publications in this database date back to 1969, comprising a total of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!